Building connections that last *

Sharpe[®]

High Performance & Engineered Solutions

asc-es.com Building connections that last[™]

Table of Contents

Series 80/89 & FS80/FS89 - 3-Piece. Class 800, API 608 & Fire Safe, Std / Full Port Ball Valve	4
Series HP80/HP89 — 3-Piece. High Pressure, Std / Full Port Ball Valve	16
Series 84/99 & FS84/FS99 — 3-Piece. Class 600, High Perf. & Fire Safe, Std / Full Port Ball Valve	20
Series 60 — 3-Piece. Class 2500, Standard Port Ball Valve	26
Series 66 — 3-Piece. High Purity, Tube OD Full Port Ball Valve	32
Series 86 — 3-Piece. Instrumentation, Tube OD Full Port Ball Valve	39
Series 88 — 3-Piece. High Purity, ASME BPE, Tube OD Full Port Ball Valve	45
Series M80/M89 & M70/M74 — Metal Seat, API 608 Std / Full Port Ball Valve	53
Series CL84/CL99 — 3-Piece. Chlorine, Std / Full Port Ball Valve	65
Series V84 — 3-Piece. "V" Ball Control Valve	71
Series W84/W99 — 3-Piece. Steam Application, Std / Full Port Ball Valve	81
Series C80/C89 & C70/C74 — Cryogenic, Std / Full Port Ball Valve	87
Series 70/FS70 — Flanged, API 608 & Fire Safe, Full Port Ball Valve	97
Series 74/FS74 — Flanged, API 608 & Fire Safe, Standard Port Ball Valve	106
Series 75 — 3 & 4-Way, High Purity, Tube OD Ball Valve	. 115
Series 76 — 3-Way, Threaded & Socket Weld, Ball Valve	122
Series 77 – 3 & 4 Way, High Performance, Threaded, Socket Weld & Flanged Ball Valve	129
Series D84 — 3-Piece. High Performance, Standard Port, Diverter Ball Valve	138
Series D54 — Flanged, Standard Port, Diverter Ball Valve	145
Series D88 — 3-Piece. High Purity, Tube OD Full Port, Diverter Ball Valve	.153
Flush Bottom Tank Valves – 3-Piece. Ball Valve.	.163

Building connections that last*

Sharpe[®] Series 80/89 & FS80/FS89

High Performance 3–Piece Ball Valve

Series 80/89 & FS80/FS89 High Performance 3–Piece Ball Valve

Superior stem seal configuration for leakage protection and improved environmental performance.

The Series 80/FS80 Standard Port and Series 89/FS89 Full Port 3–Piece ball valves are

designed for high performance, long cycle life and exceptional durability. The valves are fully compliant to API 608 Class 800 for sizes up to 2¾" Standard Port, 2" Full Port, and Class 300 up to 4" Standard Port, 3" Full Port.

Building connections that last*

Features

Important Construction Components

Body Material 316 Stainless Steel, Carbon Steel, Alloy 20 & 254 SMO[®].

Rugged Body and End Pieces

Rugged body with higher and deeper stem packing area to allow for more stem seals.

Two cast bosses for optional fugitive emission ports.

Larger ISO 5211 bolt pattern for handling higher valve torques.

Extra thick end pieces to comply with Class 800 for sizes up to 2%" Standard Port, 2" Full port.

Tongue and Groove Design

Fully encapsulated body seals, allowing ends to be welded in-line, without time consuming and labor intensive disassembly.

Design compensates for bolt expansion and reduces the chance of external leakage.

Helps prevent seal ruptures in high pressure, cryogenic or steam applications.

Heavy Duty Stem Design

Stem diameters have been increased to meet the higher torque requirements of the most demanding applications. Stem to ball contact area is wider and larger, allowing the valve to be used for higher torque applications.

Design allows for the use of 316 stainless steel stem material, rather than 17–4PH, for superior corrosion resistance.

Building connections that last **

Features

Larger Bolt Design

Larger diameter body bolts to comply with Class 800 for sizes up to 2³/₄" Standard port, 2" Full Port.

Encapsulated body bolts for added protection and wash down applications.

Optional bolts and nuts to comply with NACE MR-0175/ISO 15156.

ISO 5211 Top-Works Compatibility

The top-works offer compatibility for mounting a wide range of accessories.

Sharpe[®] actuators and accessories may be retrofitted on existing valves without disruption of line integrity.

Floating Ball Design

Solid stainless steel ball with wide selection of configurations for a variety of applications including; diverting, mixing, controlling, flushing, purging and more.

Floating ball seals on the downstream seat, reducing torque and assuring a bubble-tight shutoff.

Unique Handle

A unique cast stainless steel handle specially designed to accommodate locking devices and high operating torques.

A comfortable, ergonomic, non slip hand-grip design. Handle length according to API 608 requirements.

Valve Trim

Operational flexibility and process compatibility of stem assemblies

Stem Assemblies

Various stem assemblies are available based on application requirements.

Standard – A multiple pack of Chevron "V" shaped stem seals for better sealing in TFM[®] or Nova materials.

High Temperature – Double pack of flexible graphite seals for sealing under high temperature conditions.

Fugitive Emission – 2-pack stem seals in PTFE or graphite, with lantern ring to allow leak detection through the emission port(s).

High Cycle – Unique design for demanding high cycle applications that consist of multi-system sealing devices in the stem bonnet.

Stem Sealing

Increased Stem Sealing Area – Allows for a range of sealing combinations for severe applications and other stringent design demands.

Live-Loaded Stem – Two pairs of concave and opposing spring washers provide additional compensation for seal wear.

Safe Design – Blowout proof stem ensures the stem cannot be blown out by accidental medium pressure rise.

Wear Resistance – The thrust washer is either metallic for higher temperatures and wear resistance, or PEEK for lower temperatures.

Anti-Static – Static build-up discharges by anti-static device in stem or the metallic thrust washer.

Stem Trim for Sizes Greater Than 3"

According to API 608 all valve sizes greater than 3" have an adjustable packing gland with thru bolt holes. Gland bolts pass through the holes and thread to the valve body. The position stops are bolted to the body and are not integral to the packing gland, gland flange or gland bolting.

Standard Stem Assembly

Fugitive Emission Assembly

High Cycle Assembly

Building connections that last^{**}

Seat & Seal

Options for demanding design solutions

Choice of Seats and Seals – A wide variety of seat and seal materials are readily available for the most demanding applications including, TFE, RTFE, TFM[®], Nova, Super Nova, Delrin[®], PEEK, Buna, Graphite, Impregnated Graphite, EPDM and Viton[®].

Seat Designs – All the seats are designed with circumferential relief slots to equalize body pressure and assure leak-tight sealing.

Aside from standard seats, Sharpe[®] also supplies seats designated for specific applications, including, but not limited to:

Cavity Filler Seats – Seats that eliminate the voids in the valve body cavity to minimize solidification of the media.

Metal Seats – Metal seats are the only option where high temperatures, severe abrasion and corrosive fluids are involved. See Sharpe® Valves M80/M89 and M70/M74 Metal Seated Series Brochure.

Accessories

End Connection Combinations

Customize your valve with the end connections of your choice including mixed ends. Threaded, socket weld, butt weld and extended butt weld ends are readily available.

Integrated Fugitive Emission Ports

One or two ports can be drilled and tapped into our specially designed body.

Ports align with a lantern ring precisely located between an upper and lower set of stem packing to allow monitoring of emissions.

Lockable Stem Extension

An option to move the valve top interface away from the pipe line to accommodate insulation.

Tamper Proof Locking Device

Upgrade from the standard locking device found on all Sharpe Valves to our unique spring loaded Tamper Proof Locking Device.

Spring Return Handle

Spring return handle ensures that the valve cannot be left open (or closed).

Cast Mounting Brackets

Cast stainless steel brackets with hole patterns conforming to ISO 5211 on top and bottom for actuation mounting. Safety locking holes for securing valves during maintenance (requires special couplers). Aesthetic design offers wide tool clearance for installation and open visual.

Steam Jackets

Steam jackets enable valves to be kept at a controlled temperature.

Tank Bottom Valves

Valves with special dished flanges for welding directly to tank bottoms.

Minimizes the static volume common with standard fittings.

Building connections that last*

Technical Information

Note: The maximum pressure / temperature ratings of the valve assemblies are limited to lowest of the body or seat material fitted. The valve body ratings are based on ASME B16.34 rating for materials. The graphs are based on laboratory testing and our experience in field. The seat ratings depend on the material, design, application and function. For higher pressure rating above 2000 psig, please consult with Sharpe Valves.

Standard Port Class 800 ½" - 2½" Class 300 3" - 4"

Sharpe[®] Seat Materials

T – Virgin PTFE:

Polytetrafluoroethylene is a Fluorocarbon-based polymer. This seating material has excellent chemical resistance and low coefficient of friction. Its temperature range is -100°F to 400°F (-73°C to 204°C). Color - white.

M - TFM® PTFE:

Dyneon[®] TFM PTFE is a second generation PTFE with improved chemical and heat resistant properties over first generation PTFE and exhibits better stress recovery. Its temperature range is-100°F to 500°F (-73°C to 260°C). Color – white.

R – Reinforced Polytetrafluoroethylene: (RTFE 15% Glass Filled). PTFE's mechanical properties are enhanced by adding filler material to provide improved strength, stability and wear resistance. Its temperature range is from -320°F to 450°F (-196°C to 204°C). Color-off-white.

N – Nova:

This is a Teflon base filled with glass amorphous carbon powder and graphite. It has a lower thermal contraction expansion than PTFE, and is ideal for steam or thermal fluid applications. Its temperature range is from -50°F to 550°F (-45°C to 288°C). Color – black.

Full Port

Class 800 1/4" - 2" Class 300 21/2" - 3"

B - Super Nova:

A free-flowing compound based on TFM[®] containing electro-graphitized carbon. It features: increased thermal dimensional stability and surface hardness, improved deformation under load, reduced friction and wear, and good chemical stability. It has a high limiting oxygen index (LOI), low coefficient of friction, very good mechanical properties and exceptional temperature resistance. It is used as a seat material in chemical processing and automotive industries. It is ideal to use with steam and thermal fluid applications up to 550°F (288°C) and as low as -40°F (-40°C). Color - black.

D - Delrin®:

This material is very rigid and does not undergo cold flow. It has a combination of strength, stiffness, hardness, dimensional stability, toughness, fatigue resistance, abrasion resistance, low wear and low friction. It can withstand pressure up to 6000 PSIG depending on valve size and class rating. Has a temperature range of -70° F to 180° F (-57° C to 82° C).

P - PEEK (Unfilled) Polyetheretherketone:

PEEK Polymer offers a unique combination of chemical, mechanical and thermal properties. Excellent for water and steam applications at elevated temperatures up to 600°F (315°C). Color – beige.

Other seat materials:

Other seat material are available according to the application, such as very high temperature or cryogenic conditions.

Sizes 1/2" - 2" (1/4" - 11/2" Full Port)

Item	Description	Material	Qty.
1**	Body	Carbon Steel: ASTM A216 WCB 316 Stainless Steel: ASTM A351 CF8M Alloy 20: ASTM A351 CN7M SMO 254®: ASTM A351 CK3MCuN	1
2**	End Piece	Carbon Steel: ASTM A216 WCB 316 Stainless Steel: ASTM A351 CF8M 316L Stainless Steel: ASTM A351 CF3M (used for stainless steel weld ends) Alloy 20: ASTM A351 CN7M SMO 254®: ASTM A351 CK3MCuN	2
3**	Ball	316 Stainless Steel Alloy 20 SMO 254®	1
4*	Seat	PTFE, RTFE, TFM [®] , Nova, Super Nova, PEEK, DELRIN [®]	2
5*	Body Seal	Buna, EPDM, Graphite, Impregnated Graphite, PTFE, TFM®, Viton®	2
6	Stem	316 Stainless Steel, Alloy 20, SMO 254 [®] , 17-4PH	1
6	Stern	316 Stainless Steel, Alloy 20, 17-4PH	1
7*	Thrust Bearing - Bottom	Nova, PEEK	1
8*	Thrust Bearing - Top	Nova	1
9*	Stem Packing - Bottom	PTFE, TFM [®] , Nova	2

Item	Description	Material	Qty.
10*	Stem Packing - Middle	PTFE, TFM [®] , Nova	2
11*	Stem Packing - Top	PTFE, TFM [®] ,Nova	2
12*	Stem Packing	Graphite (FS or high temperature)	2
13	Lantern Ring	300 Series Stainless Steel	1
14	Gland	300 Series Stainless Steel	1
15*	Belleville Washer	17-7PH	4
16	Packing Nut	300 Series Stainless Steel	1
17	Lock Tab	300 Series Stainless Steel	1
18	Handle	304 Stainles Steel ASTM A351 CF8	1
19	Handle Nut	300 Series Stainless Steel	1
20	Anti-Static Ball	300 Series Stainless Steel	2
21	Anti-Static Spring	Hard Drawn Stainless Steel	2
22	Bolt	A193 Gr B8	4
23	Nut	300 Series Stainless Steel	4
24	Lock Plate	300 Series Stainless Steel	1
25	Stop pin	300 Series Stainless Steel	2

Note:

The quantities listed in the stem arrangement are for fugitive emission assemblies. Standard stem assemblies carry more seals and no lantern rings. *These parts are used in repair kits.

**Other materials available, call to discuss your special requirements.

Item	Description	Material	Qty.
1**	Body	Carbon Steel: ASTM A216 WCB, 316 Stainless Steel: ASTM A351 CF8M, Alloy 20: ASTM A351 CN7M	1
2**	End Piece	Carbon Steel: ASTM A216 WCB, 316 Stainless Steel: ASTM A351 CF8M, 316L Stainless Steel: ASTM A351 CF3M (used for Stainless Steel weld ends) Alloy 20: ASTM A351 CN7M	2
3**	Ball	316 Stainless Steel Alloy 20	1
4*	Seat	PTFE, RTFE, TFM [®] , Nova, Super Nova, PEEK, DELRIN [®]	2
4a	Seat Ring	Carbon Steel: ASTM A216 WCB, 316 Stainless Steel: ASTM A351 CF8M	1
5	Body Seal	Buna, EPDM, Graphite, Impregnated Graphite, PTFE, TFM®, Viton®	2
6	Stem	316 Stainless Steel, Alloy 20, 17-4PH	1
7*	Thrust Bearing - Bottom	Nova, PEEK	1
8*	Thrust Bearing - Top	Nova	1
9*	Stem Packing - Bottom	PTFE, TFM [®] , Nova	2
10*	Stem Packing - Middle	PTFE, TFM [®] , Nova	2
11*	Stem Packing - Top	PTFE, TFM [®] , Nova	2
12*	Stem Packing	Graphite (FS or high temperature)	4
12a	Gland Position Ring	300 Stainless Steel	1
13	Lantern Ring	300 Stainless Steel	1
13a	Gland (Size 4" Only)	316 Stainless Steel A351 CF8M	1

Item	Description	Material	Qty.
14	Gland	300 Series Stainless Steel	1
15	Stop Plate	300 Series Stainless Steel	1
16*	Belleville Washer	17-7PH	4
16a	Belleville Washer	17-7PH	16
16b	Washer	300 Stainless Steel	4
17	Lock Tab	300 Stainless Steel	1
17a	Gland Bolt	300 Stainless Steel	2
18	Packing Nut	300 Stainless Steel	1
18a	Retainer Spring	300 Stainless Steel	1
19	Packing Nut	300 Stainless Steel	1
19a	Retainer Lock	300 Stainless Steel	1
20	Wrench Block	304 Stainless Steel ASTM A351CF8	1
21	Handle Pipe	Zinc Plated Carbon Steel/Stainless Steel	1
22	Wrench Bolt	300 Series Stainless Steel	1
23	Anti-Static Ball	300 Series Stainless Steel	2
24	Anti-Static Spring	Hard Drawn Stainless Steel	2
25	Bolt	A193 Gr B8	4/16
26	Nut	300 Series Stainless Steel	4/na
27	Stop Pin	300 Series Stainless Steel	2
28	Stop Pin Sleeve	300 Series Stainless Steel	2

Note:

The quantities listed in the stem arrangement are for fugitive emission assemblies. Standard stem assemblies carry more seals and no lantern rings.

*These parts are used in repair kits.

**Other materials available, call to discuss your special requirements.

Series 80/89 & FS80/FS89 High Performance 3-Piece Ball Valve

1 OIL		011	i un i ort														
89/FS89	ØPORT	Α	А	С	D	Е	F	н	K (Thread)	М	ØP (PCD)	Q	ØR	S	ØT	Х	Y
1⁄4", 3⁄8"	0.44	2.91	-	1.27	2.01	6.42	3.39	1.81	M5-P0.8	0.264	F04 (1.65)	NA	1.18	0.051	0.394	0.74	0.33
1/2"	0.56	3.07	13.10	1.42	2.17	6.42	3.54	1.95	M5-P0.8	0.264	F04 (1.65)	0.27	1.18	0.051	0.394	0.	0.33
3⁄4"	0.81	3.72	13.25	1.74	2.57	7.28	3.83	2.39	M6-P1.0	0.343	F05 (1.97)	0.39	1.38	0.059	0.472	0.	0.
1"	1.00	4.25	13.61	1.91	2.74	7.28	4.00	2.85	M6-P1.0	0.343	F05 (1.97)	0.37	1.38	0.059	0.472	0.	0.
1¼"	1.24	4.57	13.90	2.40	3.82	9.45	5.28	3.15	M8-P1.25	0.512	F07 (2.76)	0.47	2.17	0.059	0.709	1.4	0.
1½"	1.50	5.04	14.21	2.56	3.98	9.45	5.43	3.78	M8-P1.25	0.512	F07 (2.76)	0.47	2.17	0.059	0.709		0.
2"	2.00	6.34	14.87	3.58	5.28	15.75	6.34	4.92	M10-P1.5	0.630	F10 (4.02)	0.76	-	-	0.886		0
2½"	2.50	6.65	-	3.98	5.87	23.62	7.48	6.30	M10-P1.5	0.807	F10 (4.02)	0.77	-	-	1.024		0
3"	3.25	8.43	-	4.59	6.50	23.62	8.07	7.99	M10-P1.5	0.807	F10 (4.02)	0.77	-	-	1.024		0
	89/FS89 4", %" ½" 34" 1" 1¼" 1½" 2" 2" 2½" 3"	89/FS89 ØPORT ¼", ¾" 0.44 ½" 0.56 ¾" 0.81 1" 1.00 1¼" 1.24 1½" 2.00 2½" 2.00 2½" 2.50 3" 3.25	89/FS89 ØPORT A ½", %" 0.44 2.91 ½" 0.56 3.07 ¾", %" 0.81 3.72 1" 1.00 4.25 1¼" 1.24 4.57 1½" 0.50 5.04 2" 2.00 6.34 2½" 2.50 6.65 3" 3.25 8.43	89/FS89 ØPORT A A ¼", %" 0.44 2.91 - ½" 0.56 3.07 13.10 ¾" 0.81 3.72 13.25 1" 1.00 4.25 13.61 1¼" 1.24 4.57 13.90 1½" 1.50 5.04 14.21 2" 2.00 6.34 14.87 2½" 2.50 6.65 - 3" 3.25 8.43 -	89/FS89 ØPORT A A C ½" 0.44 2.91 - 1.27 ½" 0.56 3.07 13.10 1.42 ¾" 0.81 3.72 13.25 1.74 1" 1.00 4.25 13.61 1.91 1¼" 1.24 4.57 13.90 2.40 1½" 1.50 5.04 14.21 2.56 2" 2.00 6.34 14.87 3.58 2½" 2.50 6.65 - 3.98 3" 3.25 8.43 - 4.59	89/FS89 ØPORT A A C D ¹ / ₄ ", %* 0.44 2.91 - 1.27 2.01 ¹ / ₄ ", %* 0.56 3.07 13.10 1.42 2.17 ³ / ₄ " 0.81 3.72 13.25 1.74 2.57 1" 1.00 4.25 13.61 1.91 2.74 11/4" 1.24 4.57 13.90 2.40 3.82 11/2" 1.50 5.04 14.21 2.56 3.98 2" 2.00 6.34 14.87 3.58 5.28 2½" 2.50 6.65 - 3.98 5.87 3" 3.25 8.43 - 4.59 6.50	89/FS89 ØPORT A A C D E '¼", %" 0.44 2.91 - 1.27 2.01 6.42 '¼" 0.56 3.07 13.10 1.42 2.17 6.42 '¾" 0.81 3.72 13.25 1.74 2.57 7.28 1" 1.00 4.25 13.61 1.91 2.74 7.28 1'¼" 1.24 4.57 13.90 2.40 3.82 9.45 1'½" 1.50 5.04 14.21 2.56 3.98 9.45 2" 2.00 6.34 14.87 3.58 5.28 15.75 2'½" 2.50 6.65 - 3.98 5.87 23.62 3" 3.25 8.43 - 4.59 6.50 23.62	89/FS89 ØPORT A A C D E F ¹ / ₄ ", %" 0.44 2.91 - 1.27 2.01 6.42 3.39 ¹ / ₄ ", %" 0.56 3.07 13.10 1.42 2.17 6.42 3.54 ³ / ₄ " 0.81 3.72 13.25 1.74 2.57 7.28 3.83 1" 1.00 4.25 13.61 1.91 2.74 7.28 4.00 11/4" 1.24 4.57 13.90 2.40 3.82 9.45 5.28 11/4" 1.50 5.04 14.21 2.56 3.98 9.45 5.43 2" 2.00 6.34 14.87 3.58 5.28 15.75 6.34 2" 2.50 6.65 - 3.98 5.87 23.62 7.48 3" 3.25 8.43 - 4.59 6.50 23.62 8.07	B9/FS89 ØPORT A A C D E F H ¹ / ₄ ", %* 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 ¹ / ₄ ", %* 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 ³ / ₄ " 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 1" 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 11¼" 1.24 4.57 13.90 2.40 3.82 9.45 5.28 3.15 11½" 1.50 5.04 14.21 2.56 3.98 9.45 5.43 3.78 2" 2.00 6.34 14.87 3.58 5.28 15.75 6.34 4.92 2!>" 2.50 6.65 - 3.98 5.87 23.62 7.48 6.30 3" 3.25 8.43 - <td>89/FS89 ØPORT A A C D E F H K (Thread) ¹/4", %" 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 ¹/4", %" 0.56 3.07 13.10 1.42 2.17 6.42 3.39 1.81 M5-P0.8 ³/4" 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 1" 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 1%" 1.24 4.57 13.90 2.40 3.82 9.45 5.28 3.15 M8-P1.25 1¼" 1.50 5.04 14.21 2.56 3.98 9.45 5.43 3.78 M8-P1.25 2" 2.00 6.34 14.87 3.58 5.28 15.75 6.34 4.92 M10-P1.5 2½" 2.50 6.65 - 3.</td> <td>89/FS89 ØPORT A A C D E F H K (Thread) M ¹/₄", %" 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 MS-P0.8 0.264 ¹/₄", %" 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 MS-P0.8 0.264 ³/₄" 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 1" 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 11^w 1.24 4.57 13.90 2.40 3.82 9.45 5.28 3.15 M8-P1.25 0.512 11^w 1.50 5.04 14.21 2.56 3.98 9.45 5.43 3.78 M8-P1.25 0.512 2^w 2.00 6.34 14.87 3.58 5.28 15.75 6.34<</td> <td>89/FS89 ØPORT A A C D E F H K (Thread) M ØP (PCD) ^{1/4}", ^{5/4}" 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 0.264 F04 (1.65) ^{1/4}", ^{5/4}" 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 M5-P0.8 0.264 F04 (1.65) ^{3/4}" 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 F05 (1.97) 1" 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 1" 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 1"4" 1.24 4.57 13.90 2.40 3.82 9.45 5.43 3.78 M8-P1.25 0.512 F07 (2.76)</td> <td>89/FS89 ØPORT A A C D E F H K (Thread) M ØP (PCD) Q ¹/⁴, ⁵/⁸ 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 0.264 F04 (1.65) NA ¹/₈ 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 M5-P0.8 0.264 F04 (1.65) 0.27 ³/⁴ 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 F05 (1.97) 0.39 1" 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 0.37 11^w 1.24 4.57 13.90 2.40 3.82 9.45 5.28 3.15 M8-P1.25 0.512 F07 (2.76) 0.47 1^w 1.50 5.04 14.21 2.56 3.98 9.45<!--</td--><td>Bay Fish Financial 89/FS89 ØPORT A A C D E F H K (Thread) M ØP (PCD) Q ØR ¹/4", %*" 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 0.264 F04 (1.65) NA 1.18 ¹/4" 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 M5-P0.8 0.264 F04 (1.65) 0.27 1.18 ³/4" 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 F05 (1.97) 0.39 1.38 1"" 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 0.37 1.38 11¼" 1.24 4.57 13.90 2.40 3.82 9.45 5.28 3.15 M8-P1.25 0.512 F07 (2.76) 0.47<td>89/FS89 ØPORT A A C D E F H K (Thread) M ØP (PCD) Q ØR S ¹/4", %" 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 0.264 F04 (1.65) NA 1.18 0.051 ¹/4", %" 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 M5-P0.8 0.264 F04 (1.65) 0.27 1.18 0.051 ³/4" 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 F05 (1.97) 0.39 1.38 0.059 ^{11"} 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 0.37 1.38 0.059 11%" 1.24 4.57 13.90 2.40 3.82 9.45 5.28 3.15 M8-P1.25 0.512</td><td>89/FS89 ØPORT A A C D E F H K (Thread) M ØP (PCD) Q ØR S ØT ¹/⁴, %" 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 0.264 F04 (1.65) NA 1.18 0.051 0.394 ¹/₄", %" 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 M5-P0.8 0.264 F04 (1.65) NA 1.18 0.051 0.394 ³/4" 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 F05 (1.97) 0.39 1.38 0.059 0.472 1" 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 0.37 1.38 0.059 0.472 1%" 1.24 4.57 13.90 2.40 3.82 <</td><td>Bay Fish Provide Function 89/FS89 ØPORT A A C D E F H K (Thread) M ØP (PCD) Q ØR S ØT X ''', ''' 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 0.264 F04 (1.65) NA 1.18 0.051 0.394 0.74 '''' 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 M5-P0.8 0.264 F04 (1.65) 0.27 1.18 0.051 0.394 0.74 ''' 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 F05 (1.97) 0.39 1.38 0.059 0.472 0. ''' 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 0.37 1.38 0.059 0.472 <</td></td></td>	89/FS89 ØPORT A A C D E F H K (Thread) ¹ /4", %" 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 ¹ /4", %" 0.56 3.07 13.10 1.42 2.17 6.42 3.39 1.81 M5-P0.8 ³ /4" 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 1" 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 1%" 1.24 4.57 13.90 2.40 3.82 9.45 5.28 3.15 M8-P1.25 1¼" 1.50 5.04 14.21 2.56 3.98 9.45 5.43 3.78 M8-P1.25 2" 2.00 6.34 14.87 3.58 5.28 15.75 6.34 4.92 M10-P1.5 2½" 2.50 6.65 - 3.	89/FS89 ØPORT A A C D E F H K (Thread) M ¹ / ₄ ", %" 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 MS-P0.8 0.264 ¹ / ₄ ", %" 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 MS-P0.8 0.264 ³ / ₄ " 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 1" 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 11 ^w 1.24 4.57 13.90 2.40 3.82 9.45 5.28 3.15 M8-P1.25 0.512 11 ^w 1.50 5.04 14.21 2.56 3.98 9.45 5.43 3.78 M8-P1.25 0.512 2 ^w 2.00 6.34 14.87 3.58 5.28 15.75 6.34<	89/FS89 ØPORT A A C D E F H K (Thread) M ØP (PCD) ^{1/4} ", ^{5/4} " 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 0.264 F04 (1.65) ^{1/4} ", ^{5/4} " 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 M5-P0.8 0.264 F04 (1.65) ^{3/4} " 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 F05 (1.97) 1" 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 1" 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 1"4" 1.24 4.57 13.90 2.40 3.82 9.45 5.43 3.78 M8-P1.25 0.512 F07 (2.76)	89/FS89 ØPORT A A C D E F H K (Thread) M ØP (PCD) Q ¹ / ⁴ , ⁵ / ⁸ 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 0.264 F04 (1.65) NA ¹ / ₈ 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 M5-P0.8 0.264 F04 (1.65) 0.27 ³ / ⁴ 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 F05 (1.97) 0.39 1" 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 0.37 11 ^w 1.24 4.57 13.90 2.40 3.82 9.45 5.28 3.15 M8-P1.25 0.512 F07 (2.76) 0.47 1 ^w 1.50 5.04 14.21 2.56 3.98 9.45 </td <td>Bay Fish Financial 89/FS89 ØPORT A A C D E F H K (Thread) M ØP (PCD) Q ØR ¹/4", %*" 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 0.264 F04 (1.65) NA 1.18 ¹/4" 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 M5-P0.8 0.264 F04 (1.65) 0.27 1.18 ³/4" 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 F05 (1.97) 0.39 1.38 1"" 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 0.37 1.38 11¼" 1.24 4.57 13.90 2.40 3.82 9.45 5.28 3.15 M8-P1.25 0.512 F07 (2.76) 0.47<td>89/FS89 ØPORT A A C D E F H K (Thread) M ØP (PCD) Q ØR S ¹/4", %" 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 0.264 F04 (1.65) NA 1.18 0.051 ¹/4", %" 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 M5-P0.8 0.264 F04 (1.65) 0.27 1.18 0.051 ³/4" 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 F05 (1.97) 0.39 1.38 0.059 ^{11"} 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 0.37 1.38 0.059 11%" 1.24 4.57 13.90 2.40 3.82 9.45 5.28 3.15 M8-P1.25 0.512</td><td>89/FS89 ØPORT A A C D E F H K (Thread) M ØP (PCD) Q ØR S ØT ¹/⁴, %" 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 0.264 F04 (1.65) NA 1.18 0.051 0.394 ¹/₄", %" 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 M5-P0.8 0.264 F04 (1.65) NA 1.18 0.051 0.394 ³/4" 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 F05 (1.97) 0.39 1.38 0.059 0.472 1" 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 0.37 1.38 0.059 0.472 1%" 1.24 4.57 13.90 2.40 3.82 <</td><td>Bay Fish Provide Function 89/FS89 ØPORT A A C D E F H K (Thread) M ØP (PCD) Q ØR S ØT X ''', ''' 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 0.264 F04 (1.65) NA 1.18 0.051 0.394 0.74 '''' 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 M5-P0.8 0.264 F04 (1.65) 0.27 1.18 0.051 0.394 0.74 ''' 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 F05 (1.97) 0.39 1.38 0.059 0.472 0. ''' 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 0.37 1.38 0.059 0.472 <</td></td>	Bay Fish Financial 89/FS89 ØPORT A A C D E F H K (Thread) M ØP (PCD) Q ØR ¹ /4", %*" 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 0.264 F04 (1.65) NA 1.18 ¹ /4" 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 M5-P0.8 0.264 F04 (1.65) 0.27 1.18 ³ /4" 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 F05 (1.97) 0.39 1.38 1"" 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 0.37 1.38 11¼" 1.24 4.57 13.90 2.40 3.82 9.45 5.28 3.15 M8-P1.25 0.512 F07 (2.76) 0.47 <td>89/FS89 ØPORT A A C D E F H K (Thread) M ØP (PCD) Q ØR S ¹/4", %" 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 0.264 F04 (1.65) NA 1.18 0.051 ¹/4", %" 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 M5-P0.8 0.264 F04 (1.65) 0.27 1.18 0.051 ³/4" 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 F05 (1.97) 0.39 1.38 0.059 ^{11"} 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 0.37 1.38 0.059 11%" 1.24 4.57 13.90 2.40 3.82 9.45 5.28 3.15 M8-P1.25 0.512</td> <td>89/FS89 ØPORT A A C D E F H K (Thread) M ØP (PCD) Q ØR S ØT ¹/⁴, %" 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 0.264 F04 (1.65) NA 1.18 0.051 0.394 ¹/₄", %" 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 M5-P0.8 0.264 F04 (1.65) NA 1.18 0.051 0.394 ³/4" 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 F05 (1.97) 0.39 1.38 0.059 0.472 1" 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 0.37 1.38 0.059 0.472 1%" 1.24 4.57 13.90 2.40 3.82 <</td> <td>Bay Fish Provide Function 89/FS89 ØPORT A A C D E F H K (Thread) M ØP (PCD) Q ØR S ØT X ''', ''' 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 0.264 F04 (1.65) NA 1.18 0.051 0.394 0.74 '''' 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 M5-P0.8 0.264 F04 (1.65) 0.27 1.18 0.051 0.394 0.74 ''' 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 F05 (1.97) 0.39 1.38 0.059 0.472 0. ''' 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 0.37 1.38 0.059 0.472 <</td>	89/FS89 ØPORT A A C D E F H K (Thread) M ØP (PCD) Q ØR S ¹ /4", %" 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 0.264 F04 (1.65) NA 1.18 0.051 ¹ /4", %" 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 M5-P0.8 0.264 F04 (1.65) 0.27 1.18 0.051 ³ /4" 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 F05 (1.97) 0.39 1.38 0.059 ^{11"} 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 0.37 1.38 0.059 11%" 1.24 4.57 13.90 2.40 3.82 9.45 5.28 3.15 M8-P1.25 0.512	89/FS89 ØPORT A A C D E F H K (Thread) M ØP (PCD) Q ØR S ØT ¹ / ⁴ , %" 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 0.264 F04 (1.65) NA 1.18 0.051 0.394 ¹ / ₄ ", %" 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 M5-P0.8 0.264 F04 (1.65) NA 1.18 0.051 0.394 ³ /4" 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 F05 (1.97) 0.39 1.38 0.059 0.472 1" 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 0.37 1.38 0.059 0.472 1%" 1.24 4.57 13.90 2.40 3.82 <	Bay Fish Provide Function 89/FS89 ØPORT A A C D E F H K (Thread) M ØP (PCD) Q ØR S ØT X ''', ''' 0.44 2.91 - 1.27 2.01 6.42 3.39 1.81 M5-P0.8 0.264 F04 (1.65) NA 1.18 0.051 0.394 0.74 '''' 0.56 3.07 13.10 1.42 2.17 6.42 3.54 1.95 M5-P0.8 0.264 F04 (1.65) 0.27 1.18 0.051 0.394 0.74 ''' 0.81 3.72 13.25 1.74 2.57 7.28 3.83 2.39 M6-P1.0 0.343 F05 (1.97) 0.39 1.38 0.059 0.472 0. ''' 1.00 4.25 13.61 1.91 2.74 7.28 4.00 2.85 M6-P1.0 0.343 F05 (1.97) 0.37 1.38 0.059 0.472 <

Note: The dimensions above are for informational purpose only. Please refer to Sharpe® Valves if you need dimensions for construction.

How to order Sharpe® Series 80/89 & FS80/FS89

2"	FS8	0	- 6	6	6	6	R	G	G	-	SW/	/TE	-	х	-	ОН					
Size	Serie	S	Bod	y Ends	Ball	Stem	Seat	Body Seal	Stem Packing		End	ds		Service		Suffixes and Options					
	Size			Series		Body Mate	rial	S	Seat Material			End	Style		Sı	uffixes & Options					
80/FS80	89/FS89	Class	80	Standard Port	2	Alloy 20		В	Super Nova		ΤE	Threa	ded		ΩЦ	Oval Handle up to					
-	1⁄4"	800	89	Full Port	4	Carbon Ste	eel		Delrin®	_	SW	Socke	etweld		UII	2" SP or 1½" FP					
1∕2"	3⁄8"	800	FS80	Fire Safe	6	316 Stainle	es Staal		TEM®	_	BW	Buttw	eld SCI	H 40	F1	1 Emission Port **					
3⁄4"	1⁄2"	800	FS89	Fire Safe	0					_	BW10	Buttw	eld SC	H 10 *	F2	2 Emission Port **					
1"	3⁄4"	800	CF80	Cavity Filler	S	254 SM0®	*	N	Nova		FB	Flush	Bottom	ן -	1	Lockable Stem					
1¼"	1"	800	CF89	Cavity Filler	-	End Mater	ial	P	Virgin PEEK			lank	Pad		L	Extension *					
1½"	1¼"	800	Noto		2	Alloy 20		R	RTFE 15%		А	dditior	al Ends	S	А	NACE					
2"	1½"	800	Fire S	afe valves must	4	Carbon Ste	el		Glass Filled			89's	Only		VB	Vented Ball					
2½"	2"	800	use: C	raphite or gnated Graphite	316 Stainless		316 Stainle		316 Stainless		316 Stainless		316 Stainless I PIFE BW80 Buttweld SCH 80		316 Stainless		316 Stainless		CH 80	51	Steam Jacket
3	21⁄2"	300	Body	Seals and Stem	6	6 Steel (Welded		6 Steel (Welded		6 Steel (Welded		led Body		-	EDW Buttweld SCH80		СН80	00			
4	3	300	TFM®	Nova, Super			type L)		Duna	- -	EBW Extended				SJ3	Steam Jacket With 3 Outlets					
Note:			Nova	Seats.		254 SM0® 9	*		Buna	_ .		Serv	vice			Tompor Droof					
* POA.			availa	ble in PTFE.		Ball Mater	ial	E	EDPM		Х	Oxygei	n Servic	e §	ΤP	Locking Device					
** ¾" and ½" and	larger std	port,				Alloy 20		G	Graphite		U	Vaccu	Jm			Spring Return					
† 3.25" Ex	xtension:	, porta				AllUy ZU			Impregnate		MN	Amoni	a Surfa	ice -	DMH	Handle ‡					
1⁄2"–1.25 1⁄4"–1.fu	5" standar	d port,			6	316 Stainle	SS STEEL	·	Graphite	_	SF	Silicon	e Free §	§	HC	High Cycle Stem					
4" Exte	nsion: Lar	ger			S	254 SMO®?	*	M	TFM®		0.	2	200	-	5114	Packing Nut					
t Contac	t Sharne®	Valver				Stem Mate	rial	Т	PTFE						PN4	Design 4" Only					

§ Per Sharpe® Standards.

Other materials/options available please contact us with your requirement.

Applicable Standards

Body Wall Thickness	ASME B16.34
SW & Threaded Ends	ASME B16.11
Butt-Weld Ends	ASME B16.25
Basic Design	ASME B16.34, API 608 5th Ed
Fire Safe	API 607 6th Ed (FS versions only)
Pressure Test	API 598, MSS-SP 72
Mounting Dimensions	ISO 5211
NACE (Option A only)	MR-0175 / ISO 15156
Marking	MSS-SP 25
Fugitive Emission	ISO 15848-1 (with I or N stem packing)

Note: Viton® and Delrin® are registered trademarks of E.I. DuPont. TFM® is a registered trademark of Dyneon, LLC. 254 SMO® is a registered trademarks of Avesta.

б	316 Stainless Steel	M	TFM®
S	254 SM0®*	N	Nova
	End Material	Р	Virgin PEEK
2	Alloy 20	R	RTFE 15%
4	Carbon Steel		
	316 Stainless		PTFE
6	Steel (Welded ends will be type L)	Bod	y Seal Material
S	254 SM0®*	В	Buna
		Е	EDPM
	Ball Material	G	Graphite
2	Alloy 20		Imprognato
6	316 Stainless Steel	I	Graphite
S	254 SM0®*	М	TFM®
	Stem Material	T	PTFE
2	Alloy 20	V	Viton®
6	316 Stainless Steel		
-		S	tem Packing
/	17-4 PH	G	Graphite
S	254 SMO ® *	I	Impregnated Graphite
		М	TFM®
		N	Nova

RTFE 15%

PTFE

Glass Filled

R

Т

Sau	o an

Technical Information

Valve	e Size	Flow	Approx.
80/FS80	89/FS89	Cv	(lbs.)
1⁄2"	1⁄4", 3⁄4"	8	2
3⁄4"	1⁄2"	12	2
1"	3⁄4"	32	4
1¼"	1"	46	6
1½"	1¼"	80	9
2"	1½"	120	12
2½"	2"	240	27
3"	21⁄2"	350	32
4"	3"	720	53

Building connections that last*

Sharpe[®] Series HP80/HP89

High Performance – High Pressure Standard / Full Port 3–Piece Ball Valve

Design & Features

Body Material

316 Stainless Steel & Carbon Steel.

Rugged Body and End Pieces

Rugged body, with higher and deeper stem packing area to allow for more stem seals. Two cast bosses for optional fugitive emission ports. Larger ISO 5211 bolt pattern for handling higher valve torques.

Heavy Duty Stem Design

Stem diameters have been increased to meet the higher torque requirements of the most demanding applications. Stem to ball contact area is wider and larger, allowing the valve to be used for higher torque applications.

Floating Ball Design

Solid stainless steel ball with wide selection of configurations for a variety of applications including; diverting, mixing, controlling, flushing, purging and more. Floating ball seals on the downstream seat, reducing torque and assuring a bubble-tight shutoff.

Tongue and Groove Design

Fully encapsulated body seals, allowing ends to be welded in-line, without time consuming and labor intensive disassembly. Design compensates for bolt expansion and reduces the chance of external leakage.

Helps prevent seal ruptures in high pressure, cryogenic or steam applications.

Larger Bolt Design

Larger diameter body bolts encapsulated body bolts for added protection and wash down applications.

ISO 5211 Top-Works Compatibility

The top-works offer compatibility for mounting a wide range of accessories. Sharpe® actuators and accessories may be retrofitted on existing valves without disruption of line integrity.

Unique Handle

A unique cast stainless steel handle specially designed to accommodate locking devices and high operating torques.

A comfortable, ergonomic, non-slip, hand grip design. Handle length according to API 608 requirements.

Tamper Proof Locking Device

All Sharpe[®] Valves come standard with a lockable handle. The optional, Sharpe[®] exclusive, tamper proof locking device cannot be removed with a lock in place. When not being used with a lock its springs ensure the locking device snaps into place in the open or closed position to prevent accidental operation.

Stem Sealing

Increased Stem Sealing Area

Allows for a range of sealing combinations for severe applications and other stringent design demands.

Live-Loaded Stem

Two pairs of concave and opposing spring washers provide additional compensation for seal wear.

Safe Design

Blowout proof stem ensures the stem cannot be blown out by accidental medium pressure rise.

Wear Resistance

The thrust washer is either metallic for higher temperatures and wear resistance, or PEEK for l ower temperatures.

Anti-Static

Static build-up discharges by anti-static device in stem or the metallic thrust washer.

Stem Assemblies

Various stem assemblies are available based on application requirements.

Standard – A multiple pack of Chevron "V" shaped stem seals for better sealing in TFM[®] or Nova materials.

High Temperature – Double pack of flexible graphite seals for sealing under high temperature conditions.

Fugitive Emission – 2-pack stem seals in PTFE or graphite, with lantern ring to allow leak detection through the emission port(s).

High Cycle – Unique design for demanding high cycle applications that consist of multi-system sealing devices in the stem bonnet.

High Performance – High Pressure Standard / Full Port 3-Piece Ball Valve

Building connections that last*

Technical Information

Sharpe® Seat Materials

D – Delrin®:

This material is very rigid and does not undergo cold flow. It has a combination of strength, stiffness, hardness, dimensional stability, toughness, fatigue resistance, abrasion resistance, low wear and low friction. It can withstand pressure up to 6000 PSIG depending on valve size and class rating. Has a temperature range of -70° F to 180° F (-57° C to 82° C).

P - PEEK (Unfilled) Polyetheretherketone:

PEEK Polymer offers a unique combination of chemical, mechanical and thermal properties. Excellent for water and steam applications at elevated temperatures up to 600°F (315°C). Color – beige.

Notes: Sharpe[®] HP80/89 series valves 3000 CWP:

The valves are rated for their maximum cold working pressure. The graphs are based on laboratory testing and our experience in field. The maximum pressure / temperature ratings are limited to the lowest of the body or seat material. High tensile bolts and nuts A193-B8 CL 2 / 300 Series Stainless nuts.

How to order Sharpe[®] Series HP80/HP89

2"	HP80	-	6	6	6	7	Р	G	G	-	SW	/	TE
Size	Series		Body Material	End Material	Ball Material	Stem Material	Seat Material	Body Seal	Stem Packing		End	d Style	е

Siz	zes		Series		Body Material		Stem Material		Stem Packing
80	89	HP80	Standard Port	4	Carbon Steel	7	17-4PH	N	Nova
-	1⁄4"	HP89	Full Port	6	316 Stainless Steel		A	G	Graphite
14 "	34 "					_	Seat Material		
/2	/8				End Material	D	Dolrin®		End Style
3⁄4"	1/2"						Dell'III		Ellu Style
				4	Carbon Steel	Р	Virgin PEEK	TE	Threaded
1"	3⁄4"					-			
11/1					316 Stainless Steel			SW	Socketweld
1/4	I			6	(Welded ends will be		Body Seal		
1½"	1¼"				type L)	G	Graphite		
2"	1½"				Ball Material	V	Viton®		
2½"	2"			6	316 Stainless Steel				

Note:

Responsibility for proper selection, use and maintenance of any product remains soley with the purchaser and end user. We reserve the right to modify or improve the designs or specifications of any product, at any time without notice. For additional materials, end pieces and options, please refer to our 80/89 series catalog.

Delrin® is a registered trademark of DuPont.

Viton[®] is a registered trademark of DuPont.

For additional materials, end pieces and options, please refer to our 80/89 series catalog.

Building connections that last

Sharpe[®] Series 84/99 & FS84/FS99

High Performance – High Pressure Standard / Full Port 3–Piece Ball Valve

GI BM

Design & Features

Body Material

316 Stainless Steel, Carbon Steel, Hastelloy C & Alloy 20.

3-Piece Design

In-line serviceable swing-out center section allows easy access to internal valve components without disturbing alignment of pipe.

Stem Design

Live-loaded, bottom entry, blowout proof anti static stem features packing that extends valve cycle life over conventional ball valves and is the best choice for actuation.

Stem seals are live-loaded using Belleville springs to provide consistent sealing forces, reducing or eliminating the need for frequent seal adjustment.

Tongue and Groove Design

Fully encapsulated body seals, allowing ends to be welded in-line, without time consuming and labor intensive disassembly.

Design compensates for bolt expansion and reduces the chance of external leakage.

Helps prevent seal ruptures in high pressure, cryogenic or steam applications.

Encapsulated Body Bolts

Woutside environment assuring valve integrity. Ideal for wash-downs.

Slotted Seat Design

Relief slots help equalize body pressure and assure leak-tight sealing. Seats also provide a wiping action that cleans ball and seats each time valve is cycled.

Choice of Seats and Seals

A wide variety of seat and seal materials are readily available for the most demanding applications including; TFE, RTFE, TFM[®], Nova, Delrin[®], PEEK, EPDM and Viton[®].

Variety of End Combinations

A wide choice of end connections are available including, but not limited to; threaded, socket weld, butt weld, flanged and flush bottom tank pad ends.

ISO 5211 Integral Mounting Pad

Ideal for actuation.

Centering lip feature assures precise alignment of bracket, stem and coupler. Actuators may be retrofitted on existing Sharpe® Series 84/99 without disruption of line integrity. Allows for secondary containment unit to be added when necessary.

Lockable Handle

All Sharpe[®] Series 84/99 & FS84/FS99 valves are supplied with lever or pipe handles and are designed to permit locking the valve in either the open or closed position.

Traceability

Body and end piece castings are marked with heat codes providing traceability to the chemical analysis and material test reports performed at the foundry. CMTR's (Certified Material Test Reports) are available upon request.

Series 84/99 & FS84/FS99 High Performance 3-Piece Ball Valve

Part No.	Part	Qty.	Material
1	Body	1	316 Stainless Steel: ASTM A351 CF8M Carbon Steel: ASTM A216 WCB Alloy 20: ASTM A351 CN7M Hastelloy C: ASTM A494 Gr. CW-12MW
2	Ends Cap	2	316 Stainless Steel: ASTM A351 CF8M 316L Stainless Steel: ASTM A351 CF3M (used for stainless steel weld ends) Carbon Steel: ASTM A216 WCB Alloy 20: ASTM A351 CN7M Hastelloy C: ASTM A494 GR CS-12MW
3	Ball	1	316 Stainless Steel, Alloy 20, Hastelloy C
4	Stem	1	316 Stainless Steel, 17-4PH, Alloy 20, Hastelloy C
5	Seat	2	PTFE, RTFE, TFM [®] , Nova, Delrin [®] , UHMWPE, PEEK
6	Body Seal	2	PTFE, Graphite, UHMWPE, Buna, Viton®
7	Thrust Bearing	1	Nova (UHMWPE with UHMWPE Seats)
8	Thrust Bearing	1	PEEK (UHMWPE with UHMWPE Seats)
9	Stem Packing	2	Nova (UHMWPE with UHMWPE Seats)
9A	Stem Packing	1-2	Graphite (For Fire Safe & High Temperature Applications)
10	Seal Protector	1	PEEK
10A	Washer	1	300 Series Stainless Steel
11	Gland	1	300 Series Stainless Steel

Part No.	Part	Qty.	Material
12	Belleville Washer	4	300 Series Stainless Steel
13	Packing Nut	1	300 Series Stainless Steel
14	Lock Tab	1	300 Series Stainless Steel
15	Lower Lock Latch	1	300 Series Stainless Steel
15B	Upper Lock Latch	1	300 Series Stainless Steel
15C	Latch Bolt	2	300 Series Stainless Steel
16	Handle (¼" - 2")	1	300 Series Stainless Steel
16A	Wrench (3" - 4")	1	Galvanized
16B	Wrench Block	1	300 Series Stainless Steel
16C	Hex Head Bolt	1	300 Series Stainless Steel
17	Lock Washer	1	300 Series Stainless Steel
18	Handle Nut (¼" - 2")	1	300 Series Stainless Steel
19	Body Bolts	4/16	304 Stainless Steel
20	Nuts	4	300 Series Stainless Steel
21	Stop Pin	1	300 Series Stainless Steel
21A	Stopper	1	300 Series Stainless Steel
22	Seat Retainer	1	300 Series Stainless Steel Carbon Steel
23	Anti-Static Spring	1	Hard Drawn Stainless Steel
24	Anti-Static Ball	1	300 Series Stainless Steel

Dimensions (Inches)

Standard Port 84/FS84	Full Port 99/FS99	A*	A1*	В	С	D	F	G	L	М	Ν	ε Q (ISO)	R	Т	۷
1⁄2"	1⁄4", 3⁄8"	2.62	2.62	0.82	1.32	1.06	1.81	1.58	%"-24 UNF	0.220	2.15	1.42 (F03)	4.53	M5 x P0.8	0.31
3⁄4"	1⁄2"	2.87	2.87	0.97	1.27	1.13	1.94	1.65	%"-24 UNF	0.220	2.28	1.42 (F03)	4.53	M5 x P0.8	0.35
1"	3⁄4"	3.72	3.72	1.25	1.73	1.51	2.38	2.23	‰"-20 UNF	0.295	2.70	1.65 (F04)	5.79	M5 x P0.8	0.52
1¼"	1"	4.25	4.25	1.61	1.90	1.70	2.78	2.43	‰"-20 UNF	0.295	2.89	1.65 (F04)	5.79	M5 x P0.8	0.53
1½"	1¼"	4.58	4.50	1.90	2.17	1.73	3.12	2.90	%6"-18 UNF	0.342	3.15	1.97 (F05)	6.78	M6 x P1.0	0.73
2"	1½"	5.03	5.06	2.21	2.39	1.90	3.60	3.09	%6"-18 UNF	0.342	3.37	1.97 (F05)	6.78	M6 x P1.0	0.73
21⁄2"	2"	5.88	5.87	2.87	3.98	2.93	4.77	4.88	M20 x P2.5	0.551	5.61	2.75 (F07)	8.73	M8 x P1.25	0.74
3"	2½"	6.65	6.65	3.27	5.01	3.89	6.46	6.14	1" - 14 UNS	0.748	6.14	4.02 (F10)	13.74	M10 x P1.5	0.69
4"	3"	8.43	8.43	4.29	5.60	4.48	8.00	6.73	1" - 14 UNS	0.748	7.81	4.02 (F10)	13.74	M10 x P1.5	0.69

Technical Data

Note:

The maximum pressure/temperature ratings of the valve assemblies are limited to lowest of the body or seat material fitted. The valve body ratings are based on ASME B16.34 rating for materials. The graphs are based on laboratory testing and our experience in field. The seat ratings depend on the material, design, application and function. For higher pressure rating above 1,480 psig, please consult with Sharpe® Valves.

Standard Port (84) Full Port (99)

Class 600 1/2" - 21/2"	Class 600 1/4" - 2"
Class 300 3" - 4"	Class 300 21/2" - 3"

Performance Data

84/FS84	99/FS99	Cv Flow Coefficient	Equivalent Length of Pipe (Feet)	Approx. Weight (lbs.)	Port Size
-	1⁄4"	8	1.9	1.20	.44
1⁄2"	3⁄8"	8	1.9	1.20	.44
3⁄4"	1⁄2"	12	6.3	1.70	.56
1"	3⁄4"	32	3.1	3.00	.81
1¼"	1"	46	6.3	4.00	1.00
1½"	1¼"	80	4.3	6.00	1.25
2"	1½"	120	7.5	8.00	1.50
21⁄2"	2"	240	5.00	25.00	2.00
3"	2½"	350	8.3	30.00	2.50
4"	3"	720	10.4	50.20	3.25

1 Delrin[®] and UHMWPE seats should not be used for steam service.

2 Delrin[®] must not be used in Oxygen applications.

Applicable Standards

Body Wall Thickness	ASME B16.34
SW & Threaded Ends	ASME B16.11
Butt-weld Ends	ASME B16.25
Flange Dimensions	ASME B16.5
Basic Design	ASME B16.34 (Note 1)
Fire Safe	API 607 4th Edt. (FS84/FS99 only)
Testing (Options)	ASME B16.34 API 598

Building connections that last*

How to order Sharpe[®] Series 84/99

1"	1"		84 -		84 –		84 –		84 –		2	2		R	G	– TE		-	ОН
Siz	e	Series		Body 8	Ends	Ball & Stem		Seat	Seal	End	ls		Options						
Si	ze	Series		Body		/ & Ends		Seat		Ends	_	Options							
84	99	84	84 Standard Port		2 Alloy 20*		Т	PTFE	TE	Threaded	OH	Oval Ha	andle up to 2"						
-	1⁄4"	99	Full Port	4	Carbon	Steel	R	RTFE	SW	Socketweld	L	Lockab	le Stem Extension						
-	3⁄8"	_		5	Hastello	y C*	М	TFM [®]	BW10	Buttweld SCH 10*	A	NACE							
1⁄2"	1⁄2"	_		6	316 Stai	nless Steel	N	Nova	BW40	Buttweld SCH 40	VB	Vented	Ball						
3⁄4"	3⁄4"	_			Ball	& Stem	D	Delrin®	BW80	Buttweld SCH 80		Silicone	Free						
1"	1"	_		2	Alloy 20	u otem	Р	Virgin PEEK	1	150# Flanged RF*		(as per N	IFG's standards)						
1¼"	1¼"	_		5	Hastello	/ C*	U	UHMWPE	3	300# Flanged RF*	Х	Oxygen (as per N	Clean IFG's standards)						
1½"	1½"	-		6	316 Stai	nless Steel		Darder Oracl	FB	Flush Bottom									
2"	2"			7	17-4PH S	Stem / 316 SS Ball		Body Seal		Talik Lad									
21⁄2"	21⁄2"	-		·			0	UHMIWPE											
3"	3"	-					G	Graphite Impregnated		0									
4"	-	-					М	TFM [®]	_										
Note:							Т	PTFE	_	001-1									
*POA. Viton® and	d Delrin® a	are register	red trademarks o	of DuPont			V	Viton [®]	- (

3M[™], Dyneon[™], and TFM[®] are trademarks owned by 3M.

How to order Sharpe[®] Series FS84/FS99

1'	•	FS84	ŀ	-	2	2	2		R	G	-	TE		-	ОН
Siz	e	Series			Body 8	Ends	Ball & Stem		Seat	Seal		Ends			Options
Si	ze	-	Seri	es	Body & Ends		Seat			Body Se	Body Seal		Options		
FS84	FS99	FS84	Sta	ndard Port	2	Alloy 20	*	Т	PTFE	G	Graphite		OH	Oval H	landle up to 2"
-	1⁄4"	FS99	Full	Port	4	Carbon	Steel	R	RTFE		Impregna	ated	1	Locka	ble Stem
-	3⁄8"	-			5	Hastello	y C*	М	TFM®		Ends		L	Exten	sion
1⁄2"	1⁄2"	-			6	316 Stai	nless Steel	N	Nova		Threader	4	Α	NACE	
3⁄4"	3⁄4"	-									Inicauci		VB	Vente	d Ball
	1"	_				Ball	& Stem			SW	Socketwo	eld	0E	Silicor	ne Free
11/"	11/"	-			2	Alloy 20				BW10	Buttweld	SCH 10*		(as per	MFG's standards)
11/4	11/"	-			5	Hastelloy	C*			BW40	Buttweld	SCH 40	х	Oxyge	n Clean MEC's standards)
1 1/2	1 1/2	_			6	316 Stair	nless Steel			B///80	Buttwold	SCH 80		(as per	
2"	2"	_			7	17-4PH S	tem / 316 SS Ball				Duttweiu	301100			
21⁄2"	-	_								1	150# Flai	nged RF*			
Note:										3	300# Flai	nged RF*			
3M™, Dyr	neon™, an	d TFM® are	trade	marks owr	ned by 3N	4.				FB	Flush Bot Tank Pad	tom			

Building connections that last*

SHARPE

Sharpe[®] Series 60

Class 2500 Standard Port 3–Piece Ball Valve

Design & Features

Class 2500 Standard Port 3-Piece Ball Valve

Body Material

316 Stainless & Carbon Steel.

3-Piece Design

In-line serviceable swing-out center section allows easy access to internal valve components without disturbing alignment of pipe.

Stem Design

Live-loaded, bottom entry, blowout proof, anti-static stem featuring packing that extends valve cycle life over conventional ball valves and is best choice for actuation.

Stem seals are live-loaded using Belleville springs to provide consistent sealing forces, reducing or eliminating the need for frequent seal adjustment. High-strength 17-4PH stainless steel as standard material.

Tongue and Groove Design

Fully encapsulated body seals, allowing ends to be welded in-line, without time consuming and labor intensive disassembly.

Design compensates for bolt expansion and reduces the chance of external leakage.

Helps prevent seal ruptures in high pressure, cryogenic or steam applications.

Floating Ball Design

Precision engineered and machined solid stainless steel ball with relief hole in the stem slot prevents build-up of cavity pressure while the valve is open.

Slotted Seat Design

Relief slots help equalize body pressure, and assure leak-tight sealing. Seats also provide a wiping action that cleans ball and seats each time valve is cycled.

Choice of Seats and Seals

A choice of seat material is available for the most demanding applications.

Integral Mounting Pad

Permits easy field conversion from manual operation to power actuation.

Lockable Handle

All Sharpe[®] Series 60 valves are supplied with lever or pipe handles and are designed to permit locking the valve in either the open or closed position.

Traceability

Body and end piece castings are marked with heat codes providing traceability to the chemical analysis and material test reports performed at the foundry. CMTR's (Certified Material Test Reports) are available upon request.

Parts & Materials

No.	Part Name	Qty.	Material
1	Body	1	316 Stainless Steel ASTM A351 CF8M, Carbon Steel ASTM A216 WCB
2	End Piece	2	316 Stainless Steel ASTM A351 CF8M, Carbon Steel ASTM A216 WCB
3	Stem	1	17-4PH Stainless Steel
ЗA	Anti-Static Device	1	316 Stainless Steel
4	Stem Packing	3/1	Nova / Graphite
5	Gland	1	300 Series Stainless Steel
6	Belleville Washer	4	300 Series Stainless Steel
7	Packing Nut	1	300 Series Stainless Steel
8	Lock Tab	1	300 Series Stainless Steel
9	Upper Locking Device	1	300 Series Stainless Steel
10	Handle	1	300 Series Stainless Steel

No.	Part Name	Qty.	Material
11	Lock Washer	1	300 Series Stainless Steel
12	Handle Nut	1	300 Series Stainless Steel
13	Ball	1	316 Stainless Steel
14	Seat	2	Delrin [®] , Peek
15	Body Seal	2	Graphite, Viton [®] , PTFE
16	Thrust Bearings	2	Nova / PEEK
17	Lower Locking Device	1	300 Series Stainless Steel
18	Body Bolts	6/8*	ASTM A193 Gr B8 / A2-70 Stainless Steel Class 2
19	Body Washers	6/8*	304 Stainless Steel
20	Body Nuts	6/8*	300 Series Stainless Steel
21	Stop Pin	1	300 Series Stainless Steel

Note: * 1-1/2" & 2" Sizes.

Building connections that last

(Threaded and Socket Weld Ends)

Socket Weld End

Dimensions (Inches)

Size	А	В	С	D	E	F	G	Н	I	J	К	L	М	Ν	Р
1⁄4	3.00	1.50	7.11	1.55	2.93	0.43	0.56	0.75	M5x.8	1.34	-	3/8-24 UNF	0.220	1.06	0.37
3⁄8	3.09	1.54	7.11	1.55	2.93	0.43	0.69	0.75	M5x.8	1.34	-	3/8-24 UNF	0.220	1.06	0.37
1/2	3.09	1.54	7.11	1.55	2.93	0.43	0.86	0.71	M5x.8	1.34	-	3/8-24 UNF	0.220	1.06	0.37
3⁄4	3.49	1.74	7.11	1.68	3.06	0.56	1.07	0.63	M5x.8	1.34	0.59	3/8-24 UNF	0.220	1.18	0.38
1	4.00	2.00	7.70	2.16	2.48	0.81	1.33	0.98	M5x.8	1.65	0.94	7/16-20 UNF	0.295	1.50	0.57
1-1⁄2	5.07	2.54	11.53	2.89	3.15	1.25	1.91	0.94	M6x1.0	1.57	1.42	9/16-18 UNF	0.342	1.97	0.53
2	6.14	3.07	11.53	3.08	3.29	1.50	2.41	1.06	M6x1.0	1.97	1.57	9/16-18 UNF	0.342	2.17	0.54

Note: The dimensions above are for informational purpose only. Please refer to Sharpe® Valves if you need dimensions for construction.

Technical Information

Note:

*Ratings are for the valve body, specific ends may cause the ratings to change.

Technical Information

Size	Cv	Approx. Weight Lbs.
1⁄4	5	3.55
3/8	8	3.55
1/2	23	3.50
3⁄4	61	5.30
1	73	9.90
1-1⁄2	82	21.00
2	150	29.00

Building connections that last "

How to order Sharpe[®] Series 60

Fiσ·	1-1⁄2	-	60	-	4	-	6	-	D	-	Т	-	TE
1 18.	Size		Series		Body & Ends		Trim		Seat		Seal		Ends
	Size		Series	s			Trim				Ends		
	1/4		60		6	17-4 Pł	H Stainless Ste	el Stem	TE	Threa	ded		

		& 316 Stainless Steel Ball		Sockat Wald
3/8	Dady & Enda			
⅓	Body & Ends	Seat	BW	Butt-weld (Sch 160)*
3/4	4 Carbon Steel	D Delrin®	1	ANSI CL1500 RF Flange*
1	6 Stainless Steel	P Peek	1J	ANSI CL 1500 RTJ Flange*
-1½			2	ANSI CL2500 RF Flange*
2		Seal	2J	ANSI CL2500 RTJ Flange*
	1	G Graphite		
		V Viton®	Note: *POA	

*POA

Viton® is a registered trademark of E.I. Dupont. Delrin® is a registered trademark of E.I. Dupont.

Building connections that last*

Sharpe[®] Series 66

High Purity Tube Full Port 3-Piece Ball Valve

Design & Features

Body Material 316L Stainless Steel.

Tube Full Port Design (TFP)

Tube full port maintains unrestricted flow of media.

3-Piece Design

In-line serviceable swing out center section allows easy access to internal valve components without disturbing alignment of tubing.

Floating Ball Design

Precision engineered and machined solid stainless steel ball with relief hole in the stem slot prevents build-up of cavity pressure while the valve is open.

Stem Design

Live-loaded, bottom entry, blowout proof stem featuring packing that extends valve cycle life over conventional ball valves and is best choice for actuation.

Stem seals are live-loaded using Belleville springs to provide consistent sealing forces, reducing or eliminating the need for frequent seal adjustment.

ISO 5211 Integral Mounting Pad

Ideal for actuation.

Centering lip feature assures precise alignment of bracket, stem and coupler.

Actuators may be retrofitted on existing Sharpe[®] Series 66 without disruption of line integrity.

Allows for secondary containment unit to be added when necessary.

Tongue and Groove Design

Fully encapsulated body seals, allowing ends to be welded in-line, without time consuming and labor intensive disassembly.

Design compensates for bolt expansion and reduces the chance of external leakage.

Helps prevent seal ruptures in high pressure, cryogenic or steam applications.

Variety of End Combinations

End connections available include; Clamp End (CE), Short Butt Weld Tube (BE) and Butt Weld Extensions (BTE) for orbital welders.

Encapsulated Body Bolts

Heavy duty stainless steel bolting is protected from outside environment assuring valve integrity.

Ideal for wash-downs.

Lockable Handle

All Sharpe[®] Series 66 valves are supplied with lever or pipe handles and are designed to permit locking the valve in either the open or closed position.

Traceability

Body and end piece castings are marked with heat codes providing traceability to the chemical analysis and material test reports performed at the foundry. CMTR's (Certified Material Test Reports) are available upon request.

Series 66 High Purity Tube 3–Piece Ball Valve

Sizes (1/2"- 2", 21/2")

No.	Part Name	Qty.	Material
1	Body	1	316L Stainless Steel ASTM A351 CF3M
2	Pipe Ends	2	316L Stainless Steel ASTM A351 CF3M
3	Ball	1	316L Stainless Steel
4	Stem	1	316L Stainless Steel
5	Seat	2	TFM®, PTFE / RTFE / Cavity Filler PTFE
6	Body Seal	2/3	PTFE, TFM [®]
7	Thrust Bearing	1	TFM®
8	Thrust Bearing	1	TFM®
9	Stem Packing	3	TFM®
10	Seal Protector	1	TFM®
11	Gland	1	300 Series Stainless Steel
12	Belleville Washer	4	300 Series Stainless Steel
13	Packing Nut	1	300 Series Stainless Steel
14	Lock Tab	1	300 Series Stainless Steel
15	Lower Lock Hatch	1	300 Series Stainless Steel
15B	Upper Lock Hatch	1	300 Series Stainless Steel
15C	Latch Bolt	2	300 Series Stainless Steel
16	Handle	1	300 Series Stainless Steel
17	Lock Washer	1	300 Series Stainless Steel
18	Handle Nut (¼"-2")	1	300 Series Stainless Steel
19	Body Bolts	4	304 Stainless Steel
20	Nuts	4	300 Series Stainless Steel
21	Stop Pin (½")*	1 2	300 Series Stainless Steel 300 Series Stainless Steel

No.	Part Name	Qty.	Material
1	Body	1	316L Stainless Steel ASTM A351 CF3M
2	Pipe Ends	2	316L Stainless Steel ASTM A351 CF3M
3	Ball	1	316L Stainless Steel
4	Seat	2	TFM [®] , PTFE / RTFE / Cavity Filler PTFE
5	Body Seal	2	PTFE, TFM [®]
6	Thrust Bearing	2	TFM®
7	Stem	1	316L Stainless Steel
8	Stem Seal	3	TFM [®]
9	Gland	1	300 Series Stainless Steel
10	Stopper	1	300 Series Stainless Steel
11	Belleville Washer	4	300 Series Stainless Steel
12	Packing Nut	1	300 Series Stainless Steel
13	Lock Tab	1	300 Series Stainless Steel
14	Wrench Block	1	300 Series Stainless Steel
15	Handle Bolt	1	300 Series Stainless Steel
16	Stop Pin	1	300 Series Stainless Steel
17	Body Bolts	4	304 Stainless Steel
18	Body Nuts	4	300 Series Stainless Steel
19	Handle	1	300 Series Stainless Steel
20	Gland Washer	1	300 Series Stainless Steel
21	Screw	2	304 Stainless Steel
22	Lower Stopper	1	316 Stainless Steel

Building connections that last "

Series 66 High Purity Tube 3-Piece Ball Valve

Sizes (3" – 4")

No.	Part Name	Qty.	Materials
1	Body	1	316L Stainless Steel ASTM A351 CF3M
2	Pipe Ends	2	316L Stainless Steel ASTM A351 CF3M
3	Ball	1	316L Stainless Steel
4	Stem	1	316L Stainless Steel
5	Seat	2	TFM [®] , PTFE/RTFE/Cavity Filler PTFE
б	Body Seal	2	PTFE, TFM [®]
7	Thrust Bearing	1	TFM [®]
7A	Stem Location Ring	1	300 Series Stainless Steel
8	Thrust Bearing	1	TFM [®]
9	Stem Packing	3	TFM [®]
9A	Packing Protector	1	300 Series Stainless Steel

No.	Part Name	Qty.	Materials
10	Gland	1	300 Series Stainless Steel
11	Belleville Washer	4	300 Series Stainless Steel
12	Packing Nut	1	300 Series Stainless Steel
13	Lock Tab	1	300 Series Stainless Steel
14	Handle	1	300 Series Stainless Steel
15	Wrench Block	1	300 Series Stainless Steel
16	Hex Head Bolt	1	300 Series Stainless Steel
17	Body Bolts	16	304 Stainless Steel
18	Stop Pin	1	300 Series Stainless Steel
19	Seat Retainer	1	300 Series Stainless Steel
20	Stopper	1	300 Series Stainless Steel

Sizes (½" − 2")

Size	А	В	С	D	E	F	G	н	Т	Ν	М	Ι	J
1/2	3.50	0.97	0.37	0.98	1.64	2.23	4.50	M5	1.42	0.22	3/8 - 24	-	-
3⁄4	4.00	1.05	0.62	0.98	1.69	2.28	4.50	M5	1.42	0.22	3/8 - 24	-	-
1	4.50	1.54	0.87	1.98	2.36	2.84	5.79	M5	1.65	0.30	7/16 - 20	-	-
1-1/2	5.50	2.13	1.37	1.98	3.06	3.33	6.78	M6	1.97	0.35	9/16 -18	-	-
2	6.25	2.66	1.87	2.52	3.43	3.68	6.78	M6	1.97	0.35	9/16 -18	-	-
2-1/2	6.75	3.20	2.37	3.34	4.87	5.98	8.74	M8	2.76	0.55	M20 x P2.0	1.95	2.76
3	6.75	3.96	2.87	5.50	6.54	6.52	13.80	M10	4.02	0.75	1 - 14	-	-
4	8.25	4.73	3.83	6.97	7.13	7.05	13.80	M10	4.02	0.75	1 - 14	-	-

Note: The dimensions above are for informational purpose only. Please refer to Sharpe® Valves if you need dimensions for construction.

Building connections that last "
Technical Information

Note: *Ratings are for the valve body, specific ends may cause the ratings to change.

Approximate Weight (Lbs.)

Size	Tri Clamp End	Extended Butt Weld End	Short Butt Weld
1⁄4"	1.	50	1.40
3⁄8"	1.1	50	1.40
1/2"	1.	50	1.40
3⁄4"	2.0	00	1.85
1"	3.0	90	3.60
1¼"	6.0	00	5.70
1½"	7.5	50	7.30
2"	6.0	00	11.70
21⁄2"	7.	50	20.00
3"	32.	.70	30.80
4"	47.	.50	45.00

Technical Information

Size	Cv
1⁄4"	1.5
3⁄8 "	3.2
1⁄2"	8.1
3⁄4 "	28.6
1"	67
1¼"	110
1½"	192
2"	434
21/2"	779
3"	1123
4"	2054

How to order Sharpe[®] Series 66

Eig.	2		-	66	-		6	_	6		-	R	-	Т	-	CE
гıg: т	Size			Series		Body		Ball &	Ball & Stem		Seat		Seal		Ends	
	Size			Series			Seat				Ends				Options	
	1∕2			66		R	RTFE		CE	Clamp	180 Grit		Χ	Oxygen	Clean*	
	3⁄4					Т	PTFE		BF	Butt-we	eld Tube,		SF	Silicone	Free*	
	1		Во	dy & Ends		М	TEM®			Short 18-24 Ra (180 Grit)			OH	- Oval Handle*		
	1½	6	316L	. Stainless Ste	eel	C	Cavity Filler -	BTE	Butt-we Extend	veld Tube, ded 18-24 Ra (180 Gri						
	2		Ba	all & Stem									-			
	2½	6	316l	_ Stainless St	eel		Seal		-							
	3					Т	PTFE		_							
	4					М	TFM®		_							

Note:

*POA

 TFM^{\otimes} is a registered trademark of Dyleon, LLC.

Due to continuous development of our product range, we reserve the right to change the dimensions and information for this product as required.

Building connections that last*

Sharpe[®] Series 86 Instrumentation Ball Valve

Design & Features

Instrumentation Ball Valve

Body Material

316L Stainless Steel.

Tube Full Port Design (TFP)

Tube full port maintains unrestricted flow of media.

3-Piece Design

In-line serviceable swing out center section allows easy access to internal valve components without disturbing alignment of tubing.

Floating Ball Design

Precision engineered and machined solid stainless steel ball with relief hole in the stem slot prevents build-up of cavity pressure while the valve is open.

Stem Design

Live-loaded, bottom entry, blowout proof stem featuring packing that extends valve cycle life over conventional ball valves and is best choice for actuation.

Stem seals are live-loaded using Belleville springs to provide consistent sealing forces, reducing or eliminating the need for frequent seal adjustment.

ISO 5211 Integral Mounting Pad

Ideal for actuation.

Centering lip feature assures precise alignment of bracket, stem and coupler.

Actuators may be retrofitted on existing Sharpe® Series 86 without disruption of line integrity.

Allows for secondary containment unit to be added when necessary.

Tongue and Groove Design

Fully encapsulated body seals, allowing ends to be welded in-line, without time consuming and labor intensive disassembly.

Design compensates for bolt expansion and reduces the chance of external leakage.

Helps prevent seal ruptures in high pressure, cryogenic or steam applications.

Encapsulated Body Bolts

Heavy duty stainless steel bolting is protected from outside environment assuring valve integrity.

Ideal for wash downs.

Lockable Handle

All Sharpe[®] Series 86 valves are supplied with lever handles and are designed to permit locking the valve in either the open or closed position.

Traceability

Body and end piece castings are marked with heat codes providing traceability to the chemical analysis and material test reports performed at the foundry. CMTR's (Certified Material Test Reports) are available upon request.

Sizes (1/4"— 1")

No.	Part Name	Qty.	Material
1	Body	1	316L Stainless Steel ASTM A351 CF3M
2	Instrument Ends	2	316L Stainless Steel ASTM A351 CF3M
3	Ball	1	316L Stainless Steel
4	Stem	1	316L Stainless Steel
5	Seat	2	PTFE, RTFE, TFM [®] , PTFE Cavity Filler
6	Body Seal	2	PTFE, TFM®
7	Thrust Bearing	1	TFM®
8	Thrust Bearing	1	TFM®
9	Stem Packing	2	TFM [®]
10	Seal Protector	1	TFM®
11	Gland	1	300 Series Stainless Steel
12	Belleville Washer	4	300 Series Stainless Steel
13	Packing Nut	1	300 Series Stainless Steel

No.	Part Name	Qty.	Material
14	Lock Tab	1	300 Series Stainless Steel
15	Lower Lock Hatch	1	300 Series Stainless Steel
15B	Upper Lock Hatch	1	300 Series Stainless Steel
15C	Latch Bolt	2	300 Series Stainless Steel
16	Handle	1	300 Series Stainless Steel
17	Lock Washer	1	300 Series Stainless Steel
18	Handle Nut	1	300 Series Stainless Steel
19	Body Bolts	4	304 Stainless Steel
20	Nuts	4	316 Stainless Steel
21	Stop Pin	1	300 Series Stainless Steel
23	Front Ferrule	2	316 Stainless Steel
24	Back Ferrule	2	316 Stainless Steel
25	Companion Nut	2	316 Stainless Steel, Silver Plated

Dimensions (Inches)

Size	А	В	С	D	E	F	G	Н	L	Р	R	т	U	V
1⁄4	3.59	0.97	0.254	1.10	1.31	1.75	1.64	2.23	3/8-24	.218/.220	4.50	M5x.8	1.42(F03)	0.45
3/8	3.65	0.97	0.380	1.10	1.37	1.75	1.64	2.23	3/8-24	.218/.220	4.50	M5x.8	1.42(F03)	0.45
1/2	3.91	0.97	0.505	1.10	1.47	1.75	1.64	2.23	3/8-24	.218/.220	4.50	M5x.8	1.42(F03)	0.45
3⁄4	4.13	1.05	0.755	1.16	1.54	2.05	1.69	2.28	3/8-24	.218/.220	4.50	M5x.8	1.42(F03)	0.39
1	5.12	1.54	0.997	1.62	1.79	2.42	2.36	2.84	7/16-20	.293/.295	5.79	M5x.8	1.65(F04)	0.65

Note:

The dimensions above are for informational purpose only. Please refer to Sharpe® Valves if you need dimensions for construction.

Technical Data

Note:

*Ratings are for the valve body, specific ends may cause the ratings to change.

How to order Sharpe[®] Series 86

Fig	3⁄4	-	86	-	6	-	6	-	R	-	Т	•	-	IE
i ig. '	Size		Series		Body		Ball & Stem	1	Seat		Sea	al		Ends
	Size	:	Series		Seat			Er	ds				Options	
	1⁄4		86	Т	PTFE		IE	Instrumer	ntation End		OH	Oval H	landle	
	3⁄8		Body	M	TFM®		TE	Threaded	Ends (NPT)*		Х	Oxygen Clean*		
	1/2	6 316LS	Stainless Steel	R	RTFE		_					(as per Mfg's Standards)		
	3⁄4	Bal	& Stem	-	Seal		-					3111001	leitee	
	1	6 316L	Stainless Steel	T	PTFE		_							
	1			M	TFM®		-							

Note: *POA

TFM® is a registered trademark of Dyleon, LLC.

Due to continuous development of our product range, we reserve the right to change the dimensions and information for this product as required.

Building connections that last

Sharpe[®] Series 88

High Purity Tube Full Port 3–Piece Ball Valve

Design & Features

Body Material

316L Stainless Steel.

ASME / BPE-2009

Designed specifically for the demanding process requirements found in the pharmaceutical, biotech, cosmetic, food and other industries where aseptic conditions are required.

5% or Less Ferrite Content

Content of less than 5% to prevent rouging.

Low Sulphur

All welded end parts made from 316L stainless steel are supplied with sulphur content of 0.005 – 0.017% assuring the integrity of the orbital welding. (BPE-2009)

All Wetted Parts Polish To 14–18 Ra, 240 Grit

Significantly reduces friction between valve and media. Crevice-free smooth surface helps eliminate areas where contaminants can proliferate. (BPE-2009)

FDA Compliant Material Hygienic Seat and Seal Design

PTFE and TFM[®] seats provide a bubble-tight bidirectional shut off.

Encapsulated PTFE and TFM[®] body seals eliminate entrapment area between valve body and valve ends.

Optional PTFE cavity fillers eliminate the dead space between the ball and valve body.

Extended Butt Weld Ends

Meets table DT-4 minimal length for automatic welding. (BPE-2009)

3-Piece Design

In-line serviceable swing out center section allows easy access to internal valve components without disturbing alignment of pipe.

Floating Ball Design

Precision engineered and machined solid stainless steel ball with relief hole in the stem slot prevents build-up of cavity pressure while the valve is open.

Stem Design

Live-loaded, bottom entry, blowout proof stem featuring packing that extends valve cycle life over conventional ball valves and is best choice for actuation.

Stem seals are live-loaded using Belleville springs to provide consistent sealing forces, reducing or eliminating the need for frequent seal adjustment.

Building connections that last*

ISO 5211 Integral Mounting Pad

Ideal for actuation.

Centering lip feature assures precise alignment of bracket, stem and coupler. Actuators may be retrofitted on existing Sharpe[®] Series 88 without disruption of line integrity.

Allows for secondary containment unit to be added when necessary.

Tongue and Groove Design

Fully encapsulated body seals, allowing ends to be welded in-line, without time consuming and labor intensive disassembly.

Design compensates for bolt expansion and reduces the chance of external leakage.

Helps prevent seal ruptures in high pressure, cryogenic or steam applications.

Variety of End Combinations

End connections available include; Clamp End (CE), Butt Weld Extensions (BTE) for orbital welders. Optional ends include but are not limited to; Short Butt Weld Tube, Butt Weld Tube of Cherry Burrell I, S & Q line and Flush Bottom Tank Pads.

Encapsulated Body Bolts

Heavy duty stainless steel bolting is protected from outside environment assuring valve integrity.

Ideal for wash-downs.

Lockable Handle

All Sharpe[®] Series 88 valves are supplied with lever or pipe handles and are designed to permit locking the valve in either the open or closed position.

Traceability

Body, end piece, ball and stems are marked with heat codes providing traceability to the chemical analysis and material test reports performed at the foundry. CMTR's are supplied with every Sharpe® Series 88 Ball Valves.

High Purity Tube Full Port 3-Piece Ball Valve

Series 88 High Purity Tube Full Port 3–Piece Ball Valve

Parts & Materials

No.	Part Name	Qty.	Materials
1	Body	1	316L Stainless Steel ASTM A351 CF3M
2	End Piece	2	316L Stainless Steel ASTM A351 CF3M
3	Ball	1	316L Stainless Steel
4	Stem	1	316L Stainless Steel
5	Seat	2	TFM®, PTFE/RTFE/Cavity Filler PTFE
6	Body Seal	2/3	PTFE, TFM®
7	Thrust Bearing	1	TFM®
8	Thrust Bearing	1	TFM®
9	Stem Packing	3	TFM®
10	Seal Protector	1	TFM®
11	Gland	1	300 Series Stainless Steel
12	Belleville Washer	4	300 Series Stainless Steel
13	Packing Nut	1	300 Series Stainless Steel
14	Lock Tab	1	300 Series Stainless Steel
15	Lower Lock Latch	1	300 Series Stainless Steel
15B	Upper Lock Latch	1	300 Series Stainless Steel
15C	Latch Bolt	2	300 Series Stainless Steel
16	Handle	1	300 Series Stainless Steel
17	Lock Washer	1	300 Series Stainless Steel
18	Handle Nut (¼"-2")	1	300 Series Stainless Steel
19	Body Bolts	4	304 Stainless Steel
20	Nuts	4	300 Series Stainless Steel
21	Stop Pin (½")*	1 2	300 Series Stainless Steel

No.	Part Name	Qty.	Materials
1	Body	1	316L Stainless Steel ASTM A351 CF3M
2	End Piece	2	316L Stainless Steel ASTM A351 CF3M
3	Ball	1	316L Stainless Steel
4	Seat	2	TFM®, PTFE/RTFE/Cavity Filler PTFE
5	Body Seal	2	PTFE, TFM®
6	Thrust Bearing	2	TFM®
7	Stem	1	316L Stainless Steel
8	Stem Seal	3	TFM®
9	Gland	1	300 Series Stainless Steel
10	Stopper	1	300 Series Stainless Steel
11	Belleville Washer	4	300 Series Stainless Steel
12	Packing Nut	1	300 Series Stainless Steel
13	Lock Tab	1	300 Series Stainless Steel
14	Wrench Block	1	300 Series Stainless Steel
15	Handle Bolt	1	300 Series Stainless Steel
16	Stop Pin	1	300 Series Stainless Steel
17	Body Bolts	4	304 Stainless Steel
18	Body Nuts	4	300 Series Stainless Steel
19	Handle	1	300 Series Stainless Steel
20	Gland Washer	1	300 Series Stainless Steel
21	Screw	2	304 Series Stainless Steel
22	Lower Stopper	1	316L Stainless Steel

No.	Part Name	Qty.	Material
1	Body	1	316L Stainless Steel ASTM A351 CF3M
2	End Piece	2	316L Stainless Steel ASTM A351 CF3M
3	Ball	1	316L Stainless Steel
4	Stem	1	316L Stainless Steel
5	Seat	2	TFM [®] , PTFE / RTFE / Cavity Filler PTFE
6	Body Seal	2	PTFE, TFM®
7	Thrust Bearing	1	TFM®
7a	Stem Location Ring	1	300 Series Stainless Steel
8	Thrust Bearing	1	TFM®
9	Stem Packing	3	TFM®
10	Gland	1	300 Series Stainless Steel

No.	Part Name	Qty.	Material
11	Belleville Washer	4	300 Series Stainless Steel
12	Packing Nut	1	300 Series Stainless Steel
13	Lock Tab	1	300 Series Stainless Steel
14	Handle	1	300 Series Stainless Steel
15	Wrench Block	1	300 Series Stainless Steel
16	Hex Head Bolt	1	300 Series Stainless Steel
17	Body Bolts	16	304 Stainless Steel
18	Stop Pin	1	300 Series Stainless Steel
19	Seat Retainer	1	300 Series Stainless Steel
20	Stopper	1	300 Series Stainless Steel

Dimensions (Inches)

Size	А	В	С	D	E	F	G	Н	Т	Ν	М	Ι	J
1/2	3.50	0.97	0.37	0.98	1.64	2.23	4.50	M5	1.42	0.22	³⁄8 - 24	-	-
3⁄4	4.00	1.05	0.62	0.98	1.69	2.28	4.50	M5	1.42	0.22	³⁄8 - 24	-	-
1	4.50	1.54	0.87	1.98	2.36	2.84	5.79	M5	1.65	0.30	7/16 - 20	-	-
1-1⁄2	5.50	2.13	1.37	1.98	3.06	3.33	6.78	M6	1.97	0.35	% ₁₆ -18	-	-
2	6.25	2.66	1.87	2.52	3.43	3.68	6.78	M6	1.97	0.35	% ₁₆ -18	-	-
2-1/2	6.75	3.20	2.37	3.34	4.87	5.98	8.74	M8	2.76	0.55	M20 x P2.0	1.95	2.76
3	6.75	3.96	2.87	5.50	6.54	6.52	13.80	M10	4.02	0.75	1 - 14	-	-
4	8.25	4.73	3.83	6.97	7.13	7.05	13.80	M10	4.02	0.75	1 - 14	-	-

Note: The dimensions above are for informational purposes only. Please refer to Sharpe® Valves if you need dimensions for construction.

Technical Information

Note: *Ratings are for the valve body, specific ends may cause the ratings to change.

Available Options

Mechanical Polishing

Available to 320 Grit (10 Ra).

Improves machined surface by removing entrapment areas and adding a high luster appearance.

Electro-Polishing

Improves surface finish of mechanical polishing up to 50%. Passivates surface for increased corrosion resistance.

Removes any entrapped contaminants.

Purge Ports

Available on bodies or ends.

These ports are suitable for CIP (clean in place) and SIP (sterilize in place) applications.

Flush Bottom Tank Pads

Highly polished and made from 316L bar stock. Tube full port assures quick unobstructed drainage.

Technical Information

Conversion Table of Surface Finishes

Surface	Mechanically Polished			
Designation ASME	Ra Average		Ra Max	
BPE	μ-in.	µ-m	μ-in.	µ-m
SFV1	15	0.375	20	0.500
SFV2	20	0.500	25	0.625
SFV3	25	0.625	30	0.750

Conversion Table Chart

Standard Grit	Ra		RMS	
	μ-in.	μ-m.	µ-in.	µ-m.
150 Grit	27 - 32	.6880	30 - 35	.7689
180 Grit	18 - 23	.4658	20 - 25	.5164
240 Grit	14 - 18	.3436	15 - 20	.3851
320 Grit	8 - 10	.2125	9 - 11	.2328

Surface	Mechanically Polished and Electropolished				
ASME	Ra Average		Ra Max		
BPE	μ-in.	µ-m	μ-in.	µ-m	
SFV4	10	0.250	15	0.375	
SFV5	15	0.375	20	0.500	
SFV6	20	0.500	25	0.625	

Approx. Weight (Lbs.)

Size	Tri Clamp End	Extended Butt Weld End	Short Butt Weld
1⁄4"	1.	50	1.40
3⁄8"	1.	1.50	
⅓"	1.	50	1.40
3⁄4"	2.	00	1.85
1"	3.	90	3.60
1¼"	6.	00	5.70
1½"	7.	50	7.30
2"	12	10	11.70
2½"	20	.80	20.00
3"	32	70	30.80
4"	47	.50	45.00

C_V Factor

Size	Cv
14"	1.5
3/8"	3.2
1/2"	8.1
3⁄4"	28.6
1"	67
1¼"	110
1½"	192
2"	434
2½"	779
3"	1123
4"	2054

How to order Sharpe[®] Series 88

Fig: 1 - 1/2 - 88 - 6 - 6 - T - T - CE

Size		Series
1⁄4*		88
3/6*		
1/2		Body & Ends
3/.	6	316L Stainless Steel
/4		
1		Ball & Stem
1-1⁄4	б	316L Stainless Steel
1-1⁄2		
2		
2-1/2		
3		
4		

	Seat			
Т	PTFE			
М	TFM [®]			
R	RTFE			
С	Cavity Filler - PTFE			
Body Seal				
М	TFM®			

Т

PTFE

Ends			
CE	Clamp Ends		
BTE	Butt-weld Tube Extended		
BE	Butt-weld (Short)*		
TP	Flush Bottom Tank Pad*		
	Cherry Burrell		
I	I Line*		
S	S Line*		
Q	Q Line*		

Options			
EP	Electro Polish*		
3	320 Grit / 8 - 10 RA*		
PP1	Purge Port on One End*		
PP2	Purge Port on Two Ends*		
PP3	Purge Port on Ends & Body*		
PPB	Purge Port on Body*		
VF	Purge with VCR Female*		
С	Purge Port Compression*		
VM	Purge Port VCR Male*		
OT	Purge Port O.D. Tubing*		
С	Purge Port with Clamp*		
Х	Oxygen Service* (As Per MFG's Standards)		
OH	Oval Handle		
L	Lockable Stem Ext.		

Note:

*POA

3M[™], Dyneon[™], and TFM[®] are trademarks owned by 3M. Due to continuous development of our product range, we reserve the right to change the dimensions and information for this product as required.

Building connections that last $\mbox{\sc "}$

Building connections that last

Sharpe[®] Series M80/M89 & M70/M74

High Performance Ball Valve

Series M80/M89 & M70/M74 High Performance Ball Valve

Valves designed for high temperatures and severe service applications

High Performance Ball Valve

Design & Features

Body Materials 316 Stainless Steel, Carbon Steel, Alloy 20.

Integral fugitive emissions ports for monitoring system control

Enlarged stem and slot for higher operating torques

Tight toleranced stem and ball with characterized port for precise process control

Building connections that last*

The exceptional capabilities of metal sealing together with the advanced features of the new line of Sharpe API 608 valves, results in a superior valve that functions under the most demanding applications where soft seats are not an option.

Design

Mate-Lapped Ball and Seat Set

The design is based on a ball and two metal seats which are precision machined, and then mate-lapped together to provide an extremely tight fit.

Behind the seats are a spring or seal whose function is to enable sealing by applying a load to the sealing surfaces.

Protected Seat Seal and Springs

The seat design protects the seat seals and the springs from the media, which reduces problems associated with solidification of material in the valve.

The metal seated valves come in two configurations depending on the application

Bi-Directional

Provides shut-off in both directions.

The valves have a symmetric build where both the upstream and downstream seats have a seat seal.

The seat seal material is polymeric or O-rings for low temperatures, and graphite or metal for high temperatures.

Uni-Directional

Provides shut-off in one direction.

The valve is built with an upstream spring and downstream seat seal.

The spring is assembled behind the upstream seat and is protected from the media. The spring material is specified according to the application media and temperature. All uni-directional valves carry a flow direction arrow. Sharpe metal seated valves are designed for applications requiring resistance to erosion, abrasion, corrosion, and high temperatures beyond the capabilities of the currently available polymeric seat materials.

Typical applications include Pulp and Paper, Petrochemical, Petroleum, Chemical, and Power industries to name a few.

An ASC Engineered Solution

Features

Important construction components

Tongue and Groove Design

Fully encapsulated body seals, allowing ends to be welded in-line, without time consuming and labor intensive disassembly.

Design compensates for bolt expansion and reduces the chance of external leakage.

Helps prevent seal ruptures in high pressure, cryogenic or steam applications.

Heavy Duty Stem Design

Stem diameters have been increased to meet the higher torque requirements of the most demanding applications.

Stem to ball contact area is wider and larger, allowing the valve to be used for higher torque applications.

Design allows for the use of 316 stainless steel stem material, rather than 17-4PH, for superior corrosion resistance.

ISO 5211 Top-Works Compatibility

The top-works offer compatibility for mounting a wider range of accessories.

Sharpe® actuators and accessories may be retrofitted on existing valves without disruption of line integrity.

Lockable Stem Extension

An option to move the valve top interface away from the pipe line to accommodate insulation.

Tamper Proof Locking Device

All Sharpe® Valves come standard with a lockable handle.

The optional, Sharpe® exclusive, tamper proof locking device cannot be removed with a lock in place. When not being used with a lock its springs ensure the locking device snaps into place in the open or closed position to prevent accidental operation.

Features

Process compatibility of stem assemblies provide operational flexibility

Stem assemblies

Various stem assemblies are available based on application requirements.

Standard – A multiple pack of chevron "V" shaped stem seals for better sealing in TFM[®] or Nova materials.

High Temperature – Double pack of flexible graphite seals for sealing under high temperature conditions.

Fugitive Emission – Two-pack stem seals in PTFE or graphite, with lantern ring to allow leak detection through the emission port(s).

High Cycle - Unique design for demanding high cycle applications that consist of multi-system sealing devices in the stem bonnet.

Stem sealing

Increased Stem Sealing Area

Allows for a range of sealing combinations for severe applications and other stringent design demands.

Live-loaded stem

Two pairs of concave and opposing spring washers provide additional compensation for seal wear.

Safe Design

Blowout proof stem ensures the stem cannot be blown out by accidental medium pressure rise.

Wear Resistance

The thrust washer is either metallic for higher temperatures and wear resistance, or PEEK for lower temperatures.

Anti-Static

Static build-up discharges by anti-static device in stem or the metallic thrust washer.

Stem trim for sizes greater than 3"

According to API 608 all valve sizes greater than 3" have an adjustable packing gland with thru bolt holes. Gland bolts pass through the holes and thread to the valve body. The position stops are bolted to the body and are not integral to the packing gland, gland flange or gland bolting.

Standard Stem Assembly

Fugitive Emission Assembly

High Cycle Assembly

Series M80/M89 & M70/M74 High Performance Ball Valve

Item	Description	Material	Qty.
1	Body	Stainless Steel ASTM A351 CF8M Carbon Steel ASTM A216 WCB Alloy 20 ASTM A351 CN7M	1
2	End	Stainless Steel ASTM A351 CF8M Carbon Steel ASTM A216 WCB Alloy 20 ASTM A351 CN7M	1/2
3	Ball	316 Stainless Steel Hard Chrome Plated (HCP)	1
4*	Body Seal	PTFE, RTFE, Graphite, Viton®	1/2
5	Stem	316 Stainless Steel, 17-4PH Stainless Steel, Inconel	1
6*	Thrust Washer	Nitronic 60, Inconel 718, PEEK (x2)	1
7*	Stem Seal - Bottom	PTFE, TFM [®] , Nova	1
7a*	Stem Seal	GRAPHITE (high temperature)	2 or 5
7b	Thrust Bearing	PEEK	1
8*	Stem Seal - Middle	PTFE, TFM [®] , Nova	5
9*	Stem Seal - Top	PTFE, TFM [®] , Nova	1
10	Gland	300 Series Stainless Steel	1 or 2
11	Belleville Spring	17-7PH Stainless Steel	4
12	Stem Nut	300 Series Stainless Steel	1
12a	Gland Position Ring	300 Series Stainless Steel	1
13	Lock Tab	300 Series Stainless Steel	1
13a	Gland (Size 4" only)	316 Stainless Steel A351 CF8M	1
14	Handle	300 Series Stainless Steel	1

Item	Description	Material	Qty.
15	Handle Nut	300 Series Stainless Steel	1
15a	Stop Plate	300 Series Stainless Steel	1
16	Metal Seat	Stainless Steel Stellite [™] 6 coated	2
16a	Belleville Washer	17-7PH	16
16b	Washer	300 Series Stainless Steel	4
17*	Seat Seal	Graphite, PTFE, Viton®	1
17a	Gland Bolt	300 Series Stainless Steel	2
18	Seat Disk Spring	17-4PH Stainless Steel, ½ Hard 301, Inconel 718	1
18a	Retainer Spring	300 Series Stainless Steel	1
19	Body Bolt/Stud	A193 8/8M	4/16
19a	Retainer Lock	300 Series Stainless Steel	1
20	Body Nut	300 Series Stainless Steel	4/8
21	Stop Pin	300 Series Stainless Steel	1
22	Stop Plate	300 Series Stainless Steel	1 or 2
23	Seat Ring	300 Series Stainless Steel	1
24	Wrench Block	300 Series Stainless Steel	1
25	Handle Pipe	300 Series Stainless Steel	1
26	Wrench Bolt	300 Series Stainless Steel	1
27	Stop Plate	300 Series Stainless Steel	1

The quantities listed in the stem arrangement are for standard stem assemblies. * These parts are used in repair kits.

Building connections that last^{**}

Item	Description	Material	Qty.
1	Body	Stainless Steel ASTM A351 CF8M Carbon Steel ASTM A216 WCB Alloy 20 ASTM A351 CN7M	1
2	End Cap	Stainless Steel ASTM A351 CF8M Carbon Steel ASTM A216 WCB Alloy 20 ASTM A351 CN7M	1
3	Ball	316 Stainless Steel Hard, Chrome Plated (HCP)	1
4*	Body Seal	PTFE, RTFE, Graphite, Viton®	1
5	Stem	316 Stainless Steel, 17-4PH Stainless Steel, Inconel	1
6*	Thrust Washer	Nitronic 60, Inconel 718, PEEK (x2)	1
7*	Stem Seal - Bottom	PTFE, TFM [®] , Nova	1
7a*	Stem Seal	Graphite (High Temperature)	2 or 5
7b	Thrust Bearing	PEEK	1
8*	Stem Seal - Middle	PTFE, TFM [®] , Nova	5
9*	Stem Seal - Top	PTFE, TFM [®] , Nova	1
10	Gland	300 Series Stainless Steel	1 or 2
11	Belleville Spring	17-7PH Stainless Steel	4
12	Stem Nut	300 Series Stainless Steel	1
12a	Gland Position Ring	300 Series Stainless Steel	1
13	Lock Tab	300 Series Stainless Steel	1
13a	Gland (Size 4" only)	316 Stainless Steel A351 CF8M	1
14	Handle	300 Series Stainless Steel	1
15	Handle Nut	300 Series Stainless Steel (1"-2")	1
15a	Stop Plate	300 Series Stainless Steel	1
16	Metal Seat	Stainless Steel Stellite™ 6 Coated	1
16a	Belleville Washer	17-7PH	16
16b	Washer	300 Series Stainless Steel	4
17	Seat Seal	Graphite, PTFE, Viton®	1
17a	Gland Bolt	300 Series Stainless Steel	2
18	Seat Disk Spring	17-7PH Stainless Steel, ½ Hard 301, Inconel 718	1
18a	Retainer Spring	300 Series Stainless Steel	1
19	Lock Plate	300 Series Stainless Steel	1
19a	Retainer Lock	300 Series Stainless Steel	1
20	Stop Pin	300 Series Stainless Steel	1 or 2
21	Thrust Seal	300 Series Stainless Steel	1
22	Stop Plate	300 Series Stainless Steel (3"- 4")	1
23	Wrench Book	300 Series Stainless Steel (3"- 4")	1
24	Wrench Bolt	300 Series Stainless Steel (3"- 4")	1

Dimensions (Inches)

Standard Port	Full Port	ØPORT	TE/SW BW	Ext BW Full Port	С	D	E	F	н	K (Thread)	М	ØP (PCD)	0	ØR	S	ØT	х	Y
M80	M89		А	А								". (. <u></u>)				<i></i>		
1⁄2"	1⁄4", 3⁄8"	0.44	2.91	-	1.27	2.01	6.42	3.39	1.81	M5-P0.8	0.264	F04 (1.65)	NA	1.18	0.051	0.394	0.74	0.33
3⁄4"	1⁄2"	0.56	3.07	13.10	1.42	2.17	6.42	3.54	1.95	M5-P0.8	0.264	F04 (1.65)	0.27	1.18	0.051	0.394	0.74	0.33
1"	3∕4″	0.81	3.72	13.25	1.74	2.57	7.28	3.83	2.39	M6-P1.0	0.343	F05 (1.97)	0.39	1.38	0.059	0.472	0.81	0.30
1¼"	1"	1.00	4.25	13.61	1.91	2.74	7.28	4.00	2.85	M6-P1.0	0.343	F05 (1.97)	0.37	1.38	0.059	0.472	0.81	0.30
1½"	1¼"	1.24	4.57	13.90	2.40	3.82	9.45	5.28	3.15	M8-P1.25	0.512	F07 (2.76)	0.47	2.17	0.059	0.709	1.41	0.48
2"	1½"	1.50	5.04	14.21	2.56	3.98	9.45	5.43	3.78	M8-P1.25	0.512	F07 (2.76)	0.47	2.17	0.059	0.709	1.41	0.48
2½"	2"	2.00	6.34	14.87	3.58	5.28	15.75	6.34	4.92	M10-P1.5	0.630	F10 (4.02)	0.76	-	-	0.886	1.92	0.65
3"	2½"	2.50	6.65	-	3.98	5.87	23.62	7.48	6.30	M10-P1.5	0.807	F10 (4.02)	0.77	-	-	1.024	1.93	0.65
4"	3"	3.25	8.43	-	4.59	6.50	23.62	8.07	7.99	M10-P1.5	0.807	F10 (4.02)	0.77	-	-	1.024	1.93	0.65

Note: The dimensions above are for informational purposes only. Please contact Sharpe® Valves if you need dimensions for construction.

Series M80/M89 & M70/M74 High Performance Ball Valve

Dimensions (Inches)

Size	ØPORT	Class 150	Class 300	Class 150	Class 300	С	D	E	F	Class 150	Class 300	K (Thread)	М	ØP (PCD)	Q	ØR	S	ØТ	х	Y
		Α	Α	В	В					ØH	ØH	_		()						
1⁄2"	0.56	4.25	5.50	1.96	2.36	1.41	2.15	6.42	3.54	3.50	3.75	M5-P0.8	0.264	F04 (1.65)	0.27	1.18	0.051	0.394	0.74	0.33
3⁄4"	0.82	4.62	6.00	2.13	2.52	1.53	2.27	6.42	3.66	3.88	4.61	M5-P0.8	0.264	F04 (1.65)	0.37	1.18	0.051	0.394	0.74	0.33
1"	1.00	5.00	6.50	2.13	2.72	1.93	2.74	7.28	3.73	4.25	4.88	M6-P1.0	0.343	F05 (1.97)	0.39	1.38	0.059	0.472	0.81	0.30
1½"	1.50	6.50	7.50	2.97	3.21	2.56	3.97	9.45	5.28	5.00	6.12	M8-P1.25	0.512	F07 (2.76)	0.47	2.17	0.059	0.709	1.41	0.48
2"	2.00	7.00	8.50	3.25	3.37	2.94	4.35	9.45	5.87	6.00	6.50	M8-P1.25	0.512	F07 (2.76)	0.47	2.17	0.059	0.709	1.41	0.48
2½"	2.50	7.50	9.50	3.58	4.00	3.98	5.91	23.62	7.48	7.01	7.52	M10-P1.5	0.807	F10 (4.02)	0.77	-	-	1.024	1.92	0.65
3"	3.00	8.00	11.12	3.83	4.20	4.25	6.18	23.62	7.64	7.52	8.27	M10-P1.5	0.807	F10 (4.02)	0.77	-	-	1.024	1.93	0.65
4"	3.94	9.00	12.00	4.61	5.06	4.90	6.83	23.62	8.28	9.02	10.00	M10-P1.5	0.807	F10 (4.02)	0.77	-	-	1.024	1.93	0.65

Note: The dimensions above are for informational purposes only. Please contact Sharpe® Valves if you need dimensions for construction.

Size	Ø Port	Class 150	Class 300	Class 150	Class 300	С	D	Е	F	Class 150	Class 300	K (Thurson d)	м	ØP (PCD)	0	ØR	S	ØТ	х	Y
		А	А	В	В					ØН	ØН	(Thread)								
1"	0.81	5.00	6.50	2.70	2.72	1.53	2.28	6.40	3.68	4.25	4.88	M5-P0.8	0.264	F04 (1.65)	0.57	1.181	0.394	0.394	0.74	0.37
1½"	1.24	6.50	7.50	3.35	3.21	2.40	3.82	9.45	5.35	6.10	6.12	M5-P1.25	0.512	F07 (2.76)	0.47	2.165	0.059	0.709	1.41	0.54
2"	1.50	7.00	8.50	3.86	5.35	2.56	3.98	9.45	5.51	6.50	6.50	M8-P1.26	0.512	F07 (2.76)	0.47	2.165	0.059	0.709	1.41	0.54
3"	2.50	8.00	11.12	3.82	6.93	3.98	5.90	23.6	7.36	7.52	8.27	M10-P1.5	0.807	F10 (4.02)	0.77	NA	NA	1.024	1.93	0.68
4"	3.25	9.00	12.00	4.80	7.79	4.59	6.50	23.6	7.95	9.02	10.0	M10-P1.5	0.807	F10 (4.02)	0.77	NA	NA	1.024	1.93	0.68

ØН

Note: The dimensions above are for informational purposes only. Please contact Sharpe® Valves if you need dimensions for construction.

В

A

Building connections that last*

Х

0

Technical Information

Note:

The maximum pressure/temperature ratings of the valve assemblies are limited to lowest of the body or seat material fitted.

The valve body ratings are based on ASME B16.34 rating for materials. The graphs are based on laboratory testing and our experience in the field.

The seat ratings depend on the material, design, application, and function.

Standard Port (84) Class 600 $\frac{1}{2}$ " - $2\frac{1}{2}$ " Class 300 3" - 4"

Coating Options

The standard combination is a hard chrome plated (HCP) stainless steel ball and stainless steel seats with Stellite[™] 6 hard facing. Other optional coatings are available, please refer to Sharpe[®] for more information.

Shut Off Class

All the valves are tested to ANSI/FCI 70–2. The seat standard leakage rates are Class V.

Full Port (99)

Class 600 1/4" - 2" **Class 300** 21/2" - 3"

Size Range

	3-Piece
Chan doub Dout (1100)	Class 800 ½" - 2½"
Standard Port (M80)	Class 300 3" - 4"
	Class 800 ½" – 2"
Full Port (M89)	Class 300 21/2" - 3"
	Flanged
Oten dead Deat (1174)	Flanged Class 150 1" — 4"
Standard Port (M74)	Flanged Class 150 1" - 4" Class 300 1" - 4"
Standard Port (M74)	Flanged Class 150 1" - 4" Class 300 1" - 4" Class 150 ½" - 4"

Series M80/M89 & M70/M74 High Performance Ball Valve

How to order Sharpe[®] Series M80/M89 & M70/M74

1"	M80) .	-	4	4	Ζ	G	G	Z	-	U	6GZ	-	TE/TE	-	L
Size	Series			Body	Ends	Stem	Body Seal	Stem Packing	Thrust Bearing		Flow (see cod	Seat Set ing below)		Ends (80/89 only)		Options
Size		Se	ries			Body	& Ends		Stem Packing		_	End Style			Op	tions
1⁄4"	M80	3-pie	ce S/	Ρ	2	Alloy 20 ³	k	G	Graphite		TE	Threaded			1 Emir	nion Dort
3⁄8 "	M89	3-pie	ce F/	Ρ	4	Carbon S	Steel	Μ	TFM®		SW	Socketweld			2 Emi	Siuli Puil
1⁄2"	M701	Flang	jed #	150 S/P	6	316 Stai	nless Steel	N	NOVA		BW10	Buttweld S0	H 10*	— <u> </u>		bla Stam
3⁄4"	M703	Flang	jed #	300 F/P				R	RTFE		BW40	Buttweld SC	H 40	— L	Extens	sion
1"	M741	Flang	jed #	150 S/P*		St	em	T	PTFE		BW80	Buttweld SC	H 80	A	NACE	
1¼"	M743	Flang	jed #	300 S/P*	Z	Inconel 7	718		Thurst Danis		. 1	150# Fland	ed RF*	VB	Venteo	d Ball
1½"					6	316 SS			I nrust Bearing		3	300# Fland	ed RF*	SJ	Steam	Jacket
2"					_7	17-4PH		C	Nitronic 60		6	600# Flang	ed RF*	S 12	Steam	Jacket With
21⁄2"									PEEK			Evtended Bl	V		3 Outle	ets
3"						Body	/ Seal	Z	Inconel 718		EBW	(Series 89 0	nly)	TP	Tampe	er Proof In Device
Note					G	Graphite					FB	Flush Bottor	n		LUCKI	
*POA					T	PTFE						Tank Pad				
					V	Viton [®]					When pla as many	acing an order details on the	or requ applica	esting a quota tion as possibl	tion, pl e such a	ease provide as media type,

Seat Set

	Flow	(F	Material	Coating		Seat Seal		Spring
U	Uni-Directional	(L	01(/01(G	Graphite	Z*	Inconel 178
В	Bi-Directional		310/310	HUP/S0	Т	PTFE	3	300 Stainless Steel
					V	Viton®	7	17-7PH Stainless Steel

I

L

B6T	316/316, HCP/S6, PTFE seat seal for temperatures up to 400°F
B6V	316/316, HCP/S6, Viton® seat seal for temperatures up to 400°F
B6G	316/316, HCP/S6, Graphite seat seal for temperatures up to 750°F

Uni-Directional Set (U)							
J6T	316/316, HCP/S6, PTFE seat seal, 17-7 spring for temperatures up to 400°F						
16V7	316/316, HCP/S6, Viton® seat seal, 17-7 spring for temperatures up to 400°F						
I6GZ	316/316, HCP/S6, Graphite seat seal, Inconel spring for temperatures up to 1000°F						

Note:

Viton is a registered trademark of Dupont. $3M^{\text{TM}}$, Dyneon $^{\text{TM}}$, TFM® are trademarks owned by 3M. $STELLITE^{\text{TM}}$ is a trademark of KENNAMETAL.

temperature, pressure, pipe size and etc.

S6

Stellite™ 6

** These items used as standard

Building connections that last

Sharpe[®]Series CL84/CL99

Chlorine Ball Valve

Design & Features

Body Material

Carbon Steel & Hastelloy C.

3-Piece Design

In-line serviceable swing-out center section allows easy access to internal valve components without disturbing alignment of pipe.

Stem Design

Live-loaded, bottom entry, blowout proof, anti-static stem featuring packing that extends valve cycle life over conventional ball valves and is best choice for actuation.

Stem seals are live-loaded using Belleville springs to provide consistent sealing forces, reducing or eliminating the need for frequent seal adjustment.

Tongue and Groove Design

Fully encapsulated body seals, allowing ends to be welded in-line, without time consuming and labor intensive disassembly.

Design compensates for bolt expansion and reduces the chance of external leakage.

Helps prevent seal ruptures in high pressure, cryogenic or steam applications.

Floating Ball Design

Precision engineered and machined solid stainless steel ball with relief hole in the stem slot prevents build-up of cavity pressure while the valve is open.

Encapsulated Body Bolts

Heavy duty stainless steel bolting is protected from outside environment assuring valve integrity.

Ideal for wash-downs.

Slotted Seat Design

Relief slots help equalize body pressure and assure leak-tight sealing.

Seats also provide a wiping action that cleans ball and seats each time valve is cycled.

Variety of End Combinations

A wide choice of end connections are available including, but not limited to; threaded, socket weld, butt weld and flanged ends.

ISO 5211 Integral Mounting Pad

Ideal for actuation.

Centering lip feature assures precise alignment of bracket, stem and coupler.

Actuators may be retrofitted on existing Sharpe[®] Series CL84/CL99 without disruption of line integrity.

Allows for secondary containment unit to be added when necessary.

Lockable Handle

All Sharpe[®] Series CL84/CL99 valves are supplied with lever or pipe handles and are designed to permit locking the valve in either the open or closed position.

Pressure Relief Hole

All Sharpe[®] Series CL84/CL99 valves are supplied with a relief hole in the side of the ball to vent pressure upstream.

Special Cleaning & Packing

All Sharpe[®] CL84 & CL99 valves are completely degreased and sealed in a bag for chlorine applications.

Traceability

Body and end piece castings are marked with heat codes providing traceability to the chemical analysis and material test reports performed at the foundry. CMTR's (Certified Material Test Reports) are available upon request.

Series CL84/CL99 Chlorine Ball Valve

No.	Part Name	Qty.	Material
1	Body	1	Carbon Steel: ASTM A216 WCB Hastelloy C*: ASTM A494 Gr. CW-12MW
2	Ends	2	Carbon Steel: ASTM A216 WCB Hastelloy C*: ASTM A494 Gr. CW-12MW
3	Ball with Upstream Vent	1	Hastelloy C, Monel
4	Stem	1	Hastelloy C, Monel
5	Seat	2	PTFE, RTFE, TFM [®] , NOVA
6	Body Seal	2	PTFE, Graphite
7	Thrust Bearing	1	Nova
8	Thrust Bearing	1	PEEK
9	Stem Packing	2	Nova
9A	Stem Packing	1-2	Graphite
10	Seal Protector	1	PEEK
10A	Washer	10	300 Series Stainless Steel
11	Gland	1	300 Series Stainless Steel
12	Belleville Washer	4	300 Series Stainless Steel
13	Packing Nut	1	300 Series Stainless Steel
14	Lock Tab	1	300 Series Stainless Steel
15	Lower Lock Latch	1	300 Series Stainless Steel

Part Name	Qty.	Material
Upper Lock Latch	1	300 Series Stainless Steel
Latch Bolt	2	300 Series Stainless Steel
Handle (¼"-2")	1	300 Series Stainless Steel
Wrench (3" & 4")	1	Galvanized
Wrench Block	1	300 Series Stainless Steel
Hex Head Bolt	1	300 Series Stainless Steel
Lock Washer	1	300 Series Stainless Steel
Handle Nut (¼"-2")	1	300 Series Stainless Steel
Body Bolts	4/16	304 Stainless Steel
Nuts	4	300 Series Stainless Steel
Stop Pin	1	300 Series Stainless Steel
Stopper	1	300 Series Stainless Steel
Seat Retainer	1	300 Series Stainless Steel, Carbon Steel
Anti-Static Spring	1	Hard Drawn Stainless Steel
Anti-Static Ball	1	300 Series Stainless Steel
	Part Name Upper Lock Latch Latch Bolt Handle (¼"-2") Wrench (3" & 4") Wrench Block Hex Head Bolt Lock Washer Handle Nut (¼"-2") Body Bolts Nuts Stop Pin Stopper Seat Retainer Anti-Static Spring Anti-Static Ball	Part NameQty.Upper Lock Latch1Latch Bolt2Handle (¼"-2")1Wrench (3" & 4")1Wrench Block1Hex Head Bolt1Lock Washer1Handle Nut (¼"-2")1Body Bolts4/16Nuts4Stop Pin1Stopper1Seat Retainer1Anti-Static Spring1Anti-Static Ball1

Note: *POA.

Series CL84 $- 2\frac{1}{2}$ " uses wrench & wrench block. Series CL99 - 2" uses wrench & wrench block.

Series CL84/CL99 Chlorine Ball Valve

Dimensions (Inches)

Standard Port CL84	Full Port CL99	A*	A1*	В	С	D	F	G	L	М	Ν	©Q (ISO)	R	Т	V
1⁄4", 3⁄8", 1⁄2"	1⁄4", 3⁄8"	2.62	2.62	0.82	1.22	1.06	1.81	1.58	%"-24 UNF	0.220	2.15	1.42 (F03)	4.53	M5 x P0.8	0.34
3⁄4"	1⁄2"	2.87	2.87	0.97	1.27	1.13	1.94	1.65	%"-24 UNF	0.220	2.28	1.42 (F03)	4.53	M5 x P0.8	0.39
1"	3⁄4"	3.72	3.72	1.25	1.73	1.51	2.38	2.23	7⁄16"-20 UNF	0.295	2.70	1.65 (F04)	5.79	M5 x P0.8	0.52
1¼"	1"	4.25	4.25	1.61	1.90	1.70	2.78	2.43	7⁄16"-20 UNF	0.295	2.89	1.65 (F04)	5.79	M5 x P0.8	0.53
1½"	1¼"	4.58	4.50	1.90	2.17	1.73	3.12	2.90	%₁₀"-18 UNF	0.342	3.15	1.97 (F05)	6.78	M6 x P1.0	0.73
2"	1½"	5.03	5.06	2.21	2.39	1.90	3.60	3.09	%₁₀"-18 UNF	0.342	3.37	1.97 (F05)	6.78	M6 x P1.0	0.73
21⁄2"	2"	5.88	5.87	2.93	3.98	2.85	4.77	4.88	M20 x P2.5	0.551	5.61	2.75 (F07)	8.73	M8 x P1.25	0.74
3"	2½"	6.65	6.65	3.27	5.01	3.89	6.46	6.14	1" - 14 UNS	0.748	6.14	4.02 (F10)	13.74	M10 x P1.5	0.69
4"	3"	8.43	8.43	4.29	5.60	4.48	8.00	6.73	1" - 14 UNS	0.748	7.81	4.02 (F10)	13.74	M10 x P1.5	0.69

Note:

*A - CL84 Face to Face dimension for threaded, buttweld & socket weld ends.

*A1 - CL99 Face to Face dimension for threaded, buttweld & socket weld ends.

The dimensions above are for informational purpose only. Please refer to Sharpe® Valves if you need dimensions for construction.

Technical Information

Standard Port Class 600 ½" – 2½"

Class 300 3" – 4"

Full Port

Class 600 ¼" – 2" Class 300 2½" – 3"

Material Recommendations

Environment	Service	Maximum Chlorine Conc., ppm of H20	Recommendations for Ball & Stem Material
		20 ppm	Monel Ball & Stem
Clean - no chlorine in the external environment	In-line	50 ppm	Hastelloy C Ball, Monel Stem
		150 ppm	Hastelloy C Ball & Stem
Environment contains some chlorine	In-line	150 ppm	Hastelloy C Ball & Stem
Much chlorine in the environment	End of line	150 ppm	Hastelloy C Ball & Stem

Performance Data

CL84	CL99	C _V Flow Coefficient	Equivalent Length of Pipe (Feet)	Approx. Weight (Lbs.)	Port Size	
1⁄4"	-	8	1.9	1.20	.44	
3⁄8"	1⁄4"	8	1.9	1.20	.44	
1⁄2"	3⁄8"	8	1.9	1.20	.44	
3⁄4"	1⁄2"	12	6.3	1.70		
1"	3⁄4"	32	3.1	3.00	.81	
1¼"	1"	46	6.3	4.00	1.00	
1½"	1¼"	80	4.3	6.00	1.25 1.50	
2	1½"	120	7.5	8.00		
2½"	2	240	5.00	25.00	2.00	
3"	2½"	350	8.3	30.00	2.50	
4"	3"	720	10.4	50.20	3.25	

Applicable Standards

Body Wall Thickness	ASME B16.34					
SW & Threaded Ends	ASME B16.11					
Butt-weld Ends	ASME B16.25					
Flange Dimensions	ASME B16.5					
Basic Design	ASME B16.34*					
Testing (Options)	ASME B16.34 API 598					

How to order Sharpe[®] Series CL84/CL99

1"		CL84	-	2	2	R		G	-	TE	-	ОН
Size		Series		Body & End	Ball & Stem	Seat		Seal		Ends		Options
Size	Valve Series		Seat			Ends		Options				
1⁄4"	CL84	Standard F	Port	M	TFM [®]		TE	Threaded		OH	Oval Handle	2
3⁄8"	CL99	CL99 Full Port		N	Nova		SW	Socketwe	ld	L Lockable Ster		em Extension
1⁄2"	Body & Ends		R	RTFE	E	3W10	Buttweld	SCH 10*		Ball with upstream		
3⁄4"	4 Carbon Steel		Т	PTFE	E	3W40	Buttweld	SCH 40		vent (stanua	aru)	
1"	5 Hastelloy C*		Body Soal		E	3W80	Buttweld SCH 80		_			
1¼"							1 150# Flanged RF*					
1½"	Ball & Stem		G Graphite			3	300# Flar	iged RF*				
2"	3 M	onel		T	PTFE		6	600# Flar	aed RF*	-		
2½"	5 Ha	astelloy C					0	000#1101	iged iti	_		
3"												

Note: *POA

4"

3M[™] Dyneon[™] TFM[®] are trademarks owned by 3M.

Building connections that last

Sharpe[®] Series V84

High Performance 3–Piece Ball Valve V–Port Control Valve

Design & Features

Body Material

316 Stainless Steel & Carbon Steel.

3-Piece Design

In-line serviceable swing-out center section allows easy access to internal valve components without disturbing alignment of pipe.

Stem Design

Live-loaded, bottom entry, blowout proof, anti-static stem featuring packing that extends valve cycle life over conventional ball valves and is best choice for actuation.

Stem seals are live-loaded using Belleville springs to provide consistent sealing forces, reducing or eliminating the need for frequent seal adjustment.

Tongue and Groove Design

Fully encapsulated body seals, allowing ends to be welded in-line, without time consuming and labor intensive disassembly.

Design compensates for bolt expansion and reduces the chance of external leakage.

Helps prevent seal ruptures in high pressure, cryogenic or steam applications.

Floating Ball Design

Precision engineered and machined solid stainless steel ball with relief hole in the stem slot prevents build-up of cavity pressure while the valve is open.

Encapsulated Body Bolts

Heavy duty stainless steel bolting is protected from outside environment assuring valve integrity.

Ideal for wash-downs.

Slotted Seat Design

Relief slots help equalize body pressure and assure leak-tight sealing. Seats also provide a wiping action that cleans ball and seats each time valve is cycled.

Choice of Seats and Seals

A wide variety of seat and seal materials are readily available for the most demanding applications including; TFE, RTFE, TFM[®], Nova, Delrin[®], PEEK, EPDM and Viton[®].

Variety of End Combinations

A wide choice of end connections are available including, but not limited to; threaded, socket weld, butt weld, flanged and flush bottom tank pad ends.

ISO 5211 Integral Mounting Pad

Ideal for actuation.

Centering lip feature assures precise alignment of bracket, stem and coupler.

Actuators may be retrofitted on existing Sharpe® Series V84 without disruption of line integrity.

Allows for secondary containment unit to be added when necessary.

V Port Balls

The Sharpe[®] Series V84 utilizes characterized V ported balls permitting the use of soft seats to achieve a class VI shut off.

No Play Coupler

Minimizes hysteresis between valve stem and actuator.

Traceability

Body and end piece castings are marked with heat codes providing traceability to the chemical analysis and material test reports performed at the foundry. CMTR's (Certified Material Test Reports) are available upon request.

High Performance 3-Piece Ball Valve
Parts & Materials

No.	Part Name	Qty.	Material	No.	Part Name	Qty.	Material
1	Body	1	316 Stainless Steel ASTM A351 CF8M	14	Lock Tab	1	300 Series Stainless Steel
			Carbon Steel ASTM A216 WCB	15	Lower Lock Latch	1	300 Series Stainless Steel
2	Ends	2	316L Stainless Steel ASTM A351 CF3M Carbon Steel ASTM A216 WCB	15B	Upper Lock Latch	1	300 Series Stainless Steel
3	Ball	1	316 Stainless Steel	15C	Latch Bolt	2	300 Series Stainless Steel
	01	1	316 Stainless Steel	16	Handle (¼"- 2")	1	300 Series Stainless Steel
4	Stem	I	17-4PH	16A	Wrench (3" & 4")	1	Galvanized
5	Seat	2	PTFE, TFM [®] UHMWPE PTFE, Nova, PEEK, Dolrin [®]	16B	Wrench Block	1	300 Series Stainless Steel
	De de Oriel			16C	Hex Head Bolt	1	300 Series Stainless Steel
0	Body Seal	2	PIFE, Graphite, UHMWPE, Buna, Viton®	17	Lock Washer	1	300 Series Stainless Steel
7	Thrust Bearing	1	Nova (UHMWPE with UHMWPE Seats)	18	Handle Nut (¼"- 2")	1	300 Series Stainless Steel
8	Thrust Bearing	1	PEEK (UHMWPE with UHMWPE Seats)	19	Body Bolts	4/16	304 Stainless Steel
9	Stem Packing	2	Nova (UHMWPE with UHMWPE Seats)	19A	Body Connector Bolt	4	300 Series Stainless Steel
9A	Stem Packing	1-2	Graphite	20	Nuts	8	300 Series Stainless Steel
10	Seat Protector	1	PEEK	21	Stop Pin	1	300 Series Stainless Steel
10A	Washer	1	316 Stainless Steel	21A	Stopper	1	300 Series Stainless Steel
11	Gland	1	300 Series Stainless Steel	22	Seat Retainer	1	300 Series Stainless Steel Carbon Steel
12	Belleville Washer	4	300 Series Stainless Steel	23	Anti-Static Spring	1	Hard Drawn Stainless Steel
13	Packing Nut	1	300 Series Stainless Steel	24	Anti-Static Ball	1	300 Series Stainless Steel

Note: The dimensions above are for informational purpose only. Please refer to Sharpe® Valves if you need dimensions for construction.

Technical Information

		- · · ·
Control	Valve	Cy Values

Valve Size	Valve Percent Open (Degree of Rotation)											
	0 (0)	10 (9)	20 (18)	30 (27)	40 (36)	50 (45)	60 (54)	70 (63)	80 (72)	90 (81)	100 (90)	
½" - ¾" - V15		0.05	0.14	0.25	0.37	0.51	0.66	0.84	1.03	1.26	1.36	
1⁄2" - ¾" - V30		0.05	0.15	0.29	0.48	0.65	0.91	1.30	1.60	2.03	2.19	
½" - ¾" - V60		0.11	0.28	0.55	0.80	1.17	1.72	2.45	3.43	4.48	5.18	
¼" - V15		0.12	0.26	0.41	0.58	0.80	1.05	1.32	1.65	1.93	2.02	
¼" - V30		0.13	0.29	0.50	0.80	1.09	1.50	2.03	2.61	3.11	3.31	
¼" - V60		0.21	0.44	0.80	1.28	1.91	2.77	3.70	5.33	6.71	7.31	
1" - V15		0.13	0.36	0.63	0.90	1.33	1.84	2.37	2.97	3.53	3.78	
1" - V30		0.14	0.41	0.77	1.27	2.01	2.83	3.87	5.03	6.08	6.66	
1" - V60		0.25	0.69	1.34	2.31	3.59	5.34	7.55	10.29	13.28	15.04	
1-¾" - V15		0.29	0.66	1.17	1.86	2.70	3.69	4.71	5.82	7.02	7.89	
1-¾" - V30		0.33	0.88	1.75	2.89	4.42	6.23	8.31	9.97	12.19	13.91	
1-¾" - V60		0.56	1.64	3.16	5.33	8.45	11.33	15.67	22.18	28.19	32.08	
2" - V15		0.39	0.93	1.79	2.74	3.97	5.37	6.68	8.28	9.51	10.81	
2" - V30		0.40	1.18	2.21	3.88	6.09	8.44	10.91	14.08	17.25	19.49	
2" - V60		0.71	2.22	4.48	7.26	10.50	15.72	21.52	29.38	37.46	43.54	
3" - V15		0.66	1.94	3.69	6.12	9.01	11.97	15.50	19.40	23.59	27.05	
3" - V30		0.72	2.56	5.49	8.99	13.51	19.68	26.45	34.29	42.85	52.41	
3" - V60		1.65	5.32	10.98	18.95	29.77	43.94	60.07	81.37	106.13	131.43	
4" - V15		0.97	2.97	5.82	9.35	13.56	18.60	24.24	30.51	37.44	44.27	
4" - V30		1.50	4.81	9.56	16.67	25.43	35.19	47.06	60.69	77.20	91.66	
4"- V60		2.57	8.33	18.61	30.01	47.66	70.85	98.75	133.52	174.99	215.11	

Note:

 C_V is defined as the flow of liquid in gallons per minute through a valve with pressure drop of 1 psi across the valve.

Factor	ctor Valve Percent Open (Degree of Rotation)										
	0 (0)	10 (9)	20 (18)	30 (27)	40 (36)	50 (45)	60 (54)	70 (63)	80 (72)	90 (81)	100 (90)
FL	0	0.96	0.95	0.94	0.93	0.92	0.90	0.88	0.86	0.82	0.75
x _t	0	0.98	0.77	0.71	0.67	0.64	0.63	0.62	0.55	0.43	0.40

Note:

F_L- Liquid Pressure Recovery Factor.

X_t⁻ Pressure Drop Ratio Factor (Gas).

Technical Information

Flow Efficient - C	v -	Standard Seat Cont	trol Valve	- Round	Port
	v	Standard Scat Com		Noulia	

Valve Size	Valve Percent Open (Degree of Rotation)											
	0 (0)	10 (9)	20 (18)	30 (27)	40 (36)	50 (45)	60 (54)	70 (63)	80 (72)	90 (81)	100 (90)	
1⁄4" - 1⁄2"	0	0.15	0.29	0.46	0.70	1.09	1.76	2.60	4.30	6.40	8.00	
3⁄4"	0	0.21	0.43	0.70	1.05	1.62	2.64	4.00	6.40	9.60	12.00	
1"	0	0.58	1.15	1.90	2.80	4.30	7.00	10.50	17.00	26.00	32.00	
1-1/2"	0	1.48	2.95	4.75	7.20	11.00	18.00	27.00	44.00	65.50	80.00	
2"	0	2.16	4.33	6.95	10.50	16.20	26.40	39.60	64.0	96.00	120	
3"	0	6.40	12.60	20.20	31.10	47.40	77.80	1151	87	280	350	
4"	0	13.10	26.00	42.10	63.10	97.20	159	238	385	575	720	

Note:

C_V is defined as the flow of liquid in gallons per minute through a valve with pressure drop of 1 psi across the valve.

Valve Size	e Size Valve Percent Open (Degree of Rotation)										
	0 (0)	10 (9)	20 (18)	30 (27)	40 (36)	50 (45)	60 (54)	70 (63)	80 (72)	90 (81)	100 (90)
FL	0	0.92	0.91	0.91	0.90	0.86	0.86	0.72	0.65	0.61	0.50
x _t	0	0.78	0.74	0.71	0.67	0.62	0.56	0.49	0.38	0.26	0.15

Note:

FL- Liquid Pressure Recovery Factor.

Xt- Pressure Drop Ratio Factor (Gas-Choked Flow).

"No Play" Coupling

- 304 Stainless Steel Two-Piece Coupling
- Designed for Process Control Critical High Cycle
 Automated Valves
- No Hysteresis or Lost Motion

Basic Flow Equations for Liquid Service

Pipe Reducer Coefficients Loss Coefficients

$$K1 = 0.5 \cdot \left[1 - \left[\frac{d}{D1} \right]^2 \right]^2$$

Bernoulli Coefficients

Kb1 =
$$1 - \left[\frac{d}{D1}\right]^4$$

Summation

 $\Sigma K = K1 + K2 + Kb1 - Kb2$

Basic Flow Equations Flow Rate

 $q = Fp \cdot Cv \cdot \left[\frac{\Delta P}{G}\right]^{.5}$

Pressure Drop $P = G \cdot \left[\frac{q}{Fp \cdot Cv}\right]^2$

Flow Coffecient

$$Cv = \frac{q}{Fp} \cdot \left[\frac{G}{\Delta P}\right]$$

Nomenclature

$$C_V$$
=Valve flow capacity coefficientd=Valve inside diameter (in)D1=Inside diameter of upstream pipe (in)D2=Inside diameter of downstream pipe (in)Fp=Piping geometry factor, dimensionlessK1=Pressure loss coefficient for inlet reducer, dimensionlessK2=Pressure loss coefficient for outlet reducer, dimensionlessKb1=Pressure change (Bernoulli) coefficient for outlet reducer, dimensionlessKb2=Pressure change (Bernoulli) coefficient for outlet reducer, dimensionlessG=Specific gravity of liquid relative to water at 70°F ΔP =Pressure drop across the valve, or valve / reducer assembly (psi)q=Volumetric flow rate, US gpmw=Weight flow rate, lb/hr γ =Weight density of liquid lb/ft³

$$K2 = \left[1 - \left[\frac{d}{D2}\right]^2\right]^2$$

$$Kb2 = 1 - \left[\frac{d}{D2}\right]^4$$

Pipe Geometry (Reducer) Factor

г			5
En =	$Cv^2 \cdot \Sigma K$	+ 1	
гр-	890 · d ⁴		

$$\Delta P = \frac{1}{4010 \cdot \gamma} \cdot \left[\frac{w}{Fp \cdot Cv}\right]^2$$

$$Cv = \frac{W}{63.3 \cdot Fp \cdot (\Delta P \cdot \gamma)^{.5}}$$

Basic Flow Equations for Gas and Vapor Service

Flow Rate

$$q = 1360 \cdot Fp \cdot Cv \cdot P1 \cdot Y \left[\frac{x}{G \cdot T \cdot Z} \right]^{.5}$$

Pressure Drop

юр			2
∆ P =	G·T·Z	q	1
	P1	1360 · Fp · Cv · Y	

Flow Capacity Coefficients

$$CV = \frac{q}{1360 \cdot Fp \cdot P1 \cdot Y} \cdot \left[\frac{G \cdot T \cdot Z}{x}\right]^{.5}$$

$$CV = \frac{W}{63.3 \cdot F_{P} \cdot Y \cdot (x \cdot P1 \cdot \gamma 1)^{.5}}$$

w = 63.3 · Fp · Cv · Y(x · P1 · γ 1)^{.5}

 $\Delta P = \frac{1}{\gamma 1} \cdot \left[\frac{w}{63.3 \cdot Fp \cdot Cv \cdot Y} \right]^2$

Factors Fk, x, and y

Ratio of Specific Heats Factor	$Fk = \frac{k}{1.40}$
Pressure Drop Ratio	$x = \frac{\Delta P}{P1}$
Gas Expansion Factor	$Y = 1 - \frac{x}{3 \cdot Fk \cdot xt}$

Nomenclature

Cv	=	Valve flow capacity coefficient
Fp	=	Piping geometry factor, dimensionless
G	=	Specific gravity of gas relative to air at standard conditions (60°F, 14.7 psia)
ΔP	=	Pressure drop across linesize valve, or valve/reducer assembly, psi
P1	=	Pressure at the inlet of a linesize valve, or valve/reducer assembly, psia
q	=	Volumetric flow rate at standard conditions, ft ³ /hr
Т	=	Temperature at the inlet of a linesize valve, or valve/reducer assembly, $^{\circ}$ R
w	=	Weight flow rate, lb/hr
х	=	Ratio of pressure drop across linesize valve, or valve/reducer assembly to inlet pressure, dimensionless
xt	=	Terminal value of x for choked flow in linesize valves, dimensionless
Y	=	Gas expansion factor, dimensionless
Z	=	Gas compressibility factor, dimensionless
γ1	=	Density at the inlet of a linesize valve, or valve/reducer assembly, lb/ft^3

Notes:

1) Use the same equations for calculating Fp as for liquid flow calculations.

2) The equations above are for informational purposes, and cover simple, linesize, valve gas flow solutions. Where reducer effects or choked flow become involved, these calculations become considerably more complex, and beyond the intent of this document.

How to order Sharpe[®] Series V84

1"	V84 -	- 6	6	R	G –	TE	- E	-	Х
Size	Series	Body & Ends	Ball & Stem	Seat	Seal	Ends	V Port	:	Option

	_
Size	
1⁄4"	
3⁄8"	
1⁄2"	
3⁄4"	
1"	
11⁄4"	
1½"	
2"	
3"	
4"	

Valve Series	_	Seat
V84 Control	M	TFM®
Dadu 0 Fada	- N	Nova
Body & Ends	R	RTFE
4 Carbon Steel	T	PTFE
6 316 Stainless Steel	- D	Delrin®
Ball & Stem	P	Virgin PEEK
316 Stainless Steel 6 Ball and 17-4PH	U	UHMWPE
Stamless Steel Stem	-	Seal
	М	TFM [®]
	G	Graphite

Т

V

U

PTFE

Viton®

UHMWPE

	Ends	_	Options
TE	Threaded Ends (NPT)	X	Oxygen Clean
SW	Socketweld		as per MFG's Standards
BW10	Buttweld SCH 10*		V Port
BW40	Buttweld SCH 40	Α	Round Port
BW80	Buttweld SCH 80	С	V-Ball V15
1	150# Flanged RF*	D	V-Ball V30
3	300# Flanged RF*	E	V-Ball V60
6	600# Flanged RF*	F	V-Ball V90

Note:

*POA.

Viton[®] is a registered trademark of DuPont.

 $3M^{\mbox{\tiny TM}}$, Dyneon $^{\mbox{\tiny TM}}$, TFM $^{\mbox{\tiny \odot}}$ are trademarks owned by 3M.

Delrin® is a registered trademark of DuPont.

Sharpe[®] Valve Solutions Trusted Quality & Proven Performance

ASC Engineered Solutions[™] is proud to offer Sharpe brand automated and isolation valves from general purpose to the most demanding applications.

Sharpe valves are featured in major U.S. plants and internationally in Latin America, Europe, Asia and the Middle East. The full line of valves are used across all industries; manufacturing, chemical processing, paper & pulp, petroleum, power generation, food & beverage, data centers, mining, and more. Our readily available inventory allows for rapid order fulfillment through our nationwide distribution network and regional delivery centers. Our in-house design experts can customize valve assemblies according to customer specifications, design modifications and unique needs for even the most challenging application.

For more information about how Sharpe valves deliver reliable, cost-effective solutions, contact your local ASC Engineered Solutions sales representative or visit our website at <u>www.asc-es.com</u>.

Sharpe products are available in a wide range of materials and styles including:

- Stainless & carbon steel ball valves, including fire-safe
- Control valve packages
- Gate, globe & check valves
- Resilient seated butterfly valves
- Actuators and accessories
- Alloy 20, Hastelloy C, Monel & Brass valve materials available

Building connections that last

Sharpe[®] Series W84/W99

GIEM

High Performance 3-Piece Ball Valve

Design & Features

Body Material

316 Stainless Steel, Carbon Steel, Hastelloy C & Alloy 20.

3-Piece Design

In-line serviceable swing-out center section allows easy access to internal valve components without disturbing alignment of pipe.

Stem Design

Live-loaded, bottom entry, blowout proof anti static stem features packing that extends valve cycle life over conventional ball valves and is the best choice for actuation.

Stem seals are live-loaded using Belleville springs to provide consistent sealing forces, reducing or eliminating the need for frequent seal adjustment.

Tongue and Groove Design

Fully encapsulated body seals, allowing ends to be welded in-line, without time consuming and labor intensive disassembly.

Design compensates for bolt expansion and reduces the chance of external leakage.

Helps prevent seal ruptures in high pressure, cryogenic or steam applications.

Encapsulated Body Bolts

Heavy duty stainless steel bolting is protected from outside environment assuring valve integrity.

Ideal for wash-downs.

Slotted Seat Design

Relief slots help equalize body pressure and assure leak-tight sealing. Seats also provide a wiping action that cleans ball and seats each time valve is cycled.

Building connections that last

Choice of Seats and Seals

A wide variety of seat and seal materials are readily available for the most demanding applications including; TFE, RTFE, TFM[®], Nova, Delrin[®], PEEK, EPDM and Viton[®].

Variety of End Combinations

A wide choice of end connections are available including, but not limited to; threaded, socket weld, butt weld, flanged and flush bottom tank pad ends.

ISO 5211 Integral Mounting Pad

Ideal for actuation.

Centering lip feature assures precise alignment of bracket, stem and coupler. Actuators may be retrofitted on existing Sharpe[®] Series 84/99 without disruption of line integrity. Allows for secondary containment unit to be added when necessary.

Lockable Handle

All Sharpe[®] Series 84/99 & FS84/FS99 valves are supplied with lever or pipe handles and are designed to permit locking the valve in either the open or closed position.

Traceability

Body and end piece castings are marked with heat codes providing traceability to the chemical analysis and material test reports performed at the foundry. CMTR's (Certified Material Test Reports) are available upon request.

Part No.	Part	Qty.	Material	Part No.	Part
			316 Stainless Steel: ASTM A351 CF8M	12	Belleville Washer
1	Body	1	Carbon Steel: ASTM A216 WCB Alloy 20: ASTM A351 CN7M	13	Packing Nut
			Hastelloy C: ASTM A494 Gr. CW-12MW	14	Lock Tab
			316 Stainless Steel: ASTM A351 CF8M	15	Lower Lock Latch
2	Ends Cap	2	(used for stainless steel weld ends)	15B	Upper Lock Latch
	·		Alloy 20: ASTM A351 CN7M	15C	Latch Bolt
			Hastelloy C: ASTM A494 GR CS-12MW	16	Handle (¼" - 2")
3	Ball	1	316 Stainless Steel, Alloy 20, Hastelloy C	16A	Wrench (3" - 4")
4	Stem	1	316 Stainless Steel, 17-4PH,	16B	Wrench Block
			Alloy 20, Hastelloy C	16C	Hex Head Bolt
5	Seat	2	PTFE, RTFE, TFM [®] , Nova, Delrin [®] , UHMWPE, PEEK	17	Lock Washer
6	Body Seal	2	PTFE, Graphite, UHMWPE, Buna, Viton®	18	Handle Nut (¼" - 2
7	Thrust Bearing	1	Nova (UHMWPE with UHMWPE Seats)	19	Body Bolts
8	Thrust Bearing	1	PEEK (UHMWPE with UHMWPE Seats)	20	Nuts
9	Stem Packing	2	Nova (UHMWPE with UHMWPE Seats)	21	Stop Pin
9A	Stem Packing	1-2	Graphite (For Fire Safe & High Temperature Applications)	21A	Stopper
10	Seal Protector	1	PEEK	22	Seat Retainer
10A	Washer	1	300 Series Stainless Steel	23	Anti-Static Spring
11	Gland	1	300 Series Stainless Steel	24	Anti-Static Ball

Part No.	Part	Qty.	Material
12	Belleville Washer	4	300 Series Stainless Steel
13	Packing Nut	1	300 Series Stainless Steel
14	Lock Tab	1	300 Series Stainless Steel
15	Lower Lock Latch	1	300 Series Stainless Steel
15B	Upper Lock Latch	1	300 Series Stainless Steel
15C	Latch Bolt	2	300 Series Stainless Steel
16	Handle (¼" - 2")	1	300 Series Stainless Steel
16A	Wrench (3" - 4")	1	Galvanized
16B	Wrench Block	1	300 Series Stainless Steel
16C	Hex Head Bolt	1	300 Series Stainless Steel
17	Lock Washer	1	300 Series Stainless Steel
18	Handle Nut (¼" - 2")	1	300 Series Stainless Steel
19	Body Bolts	4/16	304 Stainless Steel
20	Nuts	4	300 Series Stainless Steel
21	Stop Pin	1	300 Series Stainless Steel
21A	Stopper	1	300 Series Stainless Steel
22	Seat Retainer	1	300 Series Stainless Steel Carbon Steel
23	Anti-Static Spring	1	Hard Drawn Stainless Steel
24	Anti-Static Ball	1	300 Series Stainless Steel

Dimensions (Inches)

84/FS84	99/FS99	A*	A1*	В	С	D	F	G	L	М	Ν	Q (ISO)	R	Т	۷
1/2"	1⁄4", 3⁄8"	2.62	2.62	0.82	1.32	1.06	1.81	1.58	3%"-24 UNF	0.220	2.15	1.42 (F03)	4.53	M5 x P0.8	0.31
3⁄4"	1⁄2"	2.87	2.87	0.97	1.27	1.13	1.94	1.65	%"-24 UNF	0.220	2.28	1.42 (F03)	4.53	M5 x P0.8	0.35
1"	3⁄4"	3.72	3.72	1.25	1.73	1.51	2.38	2.23	36"-20 UNF	0.295	2.70	1.65 (F04)	5.79	M5 x P0.8	0.52
1¼"	1"	4.25	4.25	1.61	1.90	1.70	2.78	2.43	‰"-20 UNF	0.295	2.89	1.65 (F04)	5.79	M5 x P0.8	0.53
1½"	1¼"	4.58	4.50	1.90	2.17	1.73	3.12	2.90	‰"-18 UNF	0.342	3.15	1.97 (F05)	6.78	M6 x P1.0	0.73
2"	1½"	5.03	5.06	2.21	2.39	1.90	3.60	3.09	%"-18 UNF	0.342	3.37	1.97 (F05)	6.78	M6 x P1.0	0.73
2½"	2"	5.88	5.87	2.87	3.98	2.93	4.77	4.88	M20 x P2.5	0.551	5.61	2.75 (F07)	8.73	M8 x P1.25	0.74
3"	2½"	6.65	6.65	3.27	5.01	3.89	6.46	6.14	1" - 14 UNS	0.748	6.14	4.02 (F10)	13.74	M10 x P1.5	0.69
4"	3"	8.43	8.43	4.29	5.60	4.48	8.00	6.73	1" - 14 UNS	0.748	7.81	4.02 (F10)	13.74	M10 x P1.5	0.69

Note: *A – 84/FS84 Face to Face dimension for threaded, buttweld & socket weld ends | *A1 – 99/FS99 Face to Face dimension for threaded, buttweld & socket weld ends. The dimensions above are for informational purpose only. Please refer to Sharpe® Valves if you need dimensions for construction.

Technical Data

Standard Port (W84) Class 600 ½" - 2½" Class 300 3" - 4" **Full Port (W99) Class 600** 1/4" - 2"

Class 300 $\frac{1}{2}$ - 2 Class 300 $\frac{21}{2}$ - 3

Performance Data

W84	W99	Cv Flow Coefficient	Equivalent Length of Pipe (Feet)	Approx. Weight (lbs.)	Port Size
-	1⁄4"	8	1.9	1.20	.44
1⁄2"	3⁄8"	8	1.9	1.20	.44
3⁄4"	1⁄2"	12	6.3	1.70	.56
1"	3⁄4"	32	3.1	3.00	.81
1¼"	1"	46	6.3	4.00	1.00
1½"	1¼"	80	4.3	6.00	1.25
2"	1½"	120	7.5	8.00	1.50
2½"	2"	240	5.00	25.00	2.00
3"	2½"	350	8.3	30.00	2.50
4"	3"	720	10.4	50.20	3.25

Applicable Standards

Body Wall Thickness	ASME B16.34
SW & Threaded Ends	ASME B16.11
Butt-weld Ends	ASME B16.25
Flange Dimensions	ASME B16.5
Basic Design	ASME B16.34 (Note 1)
Fire Safe	API 607 4th Edt. (FS84/FS99 only)
Testing (Options)	ASME B16.34 API 598

Note 1:

When specified, valves can be furnished in accordance with ASME B16.34 requirements.

How to order Sharpe[®] Series W84/W99

1"	•	W84	-	4	ŀ	6		Ν	G	-	TE		-	ОН
Siz	e	Series		Body &	Ends	Ball & Stem		Seat	Seal		Ends			Options
S	ize		Series		Bod	y & Ends		Seat		Ends				Options
W84	W99	W84	Standard Pc	ort 2	Alloy 20)*	Ν	Nova	TE	Threaded		OH	Oval H	Handle up to 2"
-	1⁄4"	W99	Full Port	4	Carbon	Steel	Р	Virgin PEEK		Socketwe	ld	L	Locka	ble Stem Extension
-	3⁄8"			6	316 Sta	inless Steel								
1/2"	1/2"	_						Body Seal	BW10	Buttweld :	SCH 10*			
3/."	3/."	-			Bal	l & Stem	G	Graphite	BW40	Buttweld	SCH 40			
 	/4 	-		2	Alloy 20			Impregnated	BW80	Buttweld	SCH 80			
		_		6	316 Sta	inless Steel								
1¼"	1¼"													
1½"	1½"													
2"	2"													
21/2"	21/2"	-												

Note: *POA.

3"

4"

3"

-

Building connections that last

Sharpe[®] Series C80/FSC80 & C89/FSC89

Cryogenic, 3–Piece Ball Valve

Series C80/FSC80 & C89/FSC89 Cryogenic, 3-Piece Ball Valve

Design

The exceptional capabilities and superiority of Sharpe[®] cryogenic valves are highlighted in the demanding requirements of cryogenic applications. Continuous operation and sealing at temperatures down to -400 °F (-240 °C) require special attention to design, manufacturing and assembly.

Series C80 & FSC80 (fire-safe)

Cryogenic, 3-Piece, Floating Ball Valve ASME Class 600 (3" & 4" ASME 300) Standard Full Port, Uni-Directional Valve Sizes: ½", ¾", 1", 1½", 2", 2½", 3", 4"

Extension Bonnet

The cryogenic extension bonnet is securely bolted to the valve's mounting pad.

Visual Indication on Stem

Visual position indicator on the top of the stem provides easy identification of ball position and location of upstream vent in ball.

Stem Sealing

Increased stem sealing area assures tight sealing in the toughest applications.

Blow-Out Proof Stem (Safety)

One-piece blow-out proof stem design.

Reliable Installation and Repair

Alignment pin between the ball and stem assures proper orientation of the ball.

Upstream Vented Ball (Safety)

Upstream vent hole in the ball prevents excessive body cavity pressure build-up in closed position due to thermal expansion.

Series C89 & FSC89 (fire-safe)

Cryogenic, 3-Piece, Floating Ball Valve ASME Class 600 (2³4" & 3" ASME 300) Full Port, Uni-Directional Valve Sizes: ½", ³/8", ¹/2", ³/4", 1", 11/4", 2", 21/2", 3"

An ASC Engineered Solution

C80/C89 FSC80/FSC89

Features

Heavy Duty Stem Design

Enlarged stem diameters to meet the higher torque requirements of the most demanding applications.

Larger and wider stem-to-ball contact area allows the valve to be used in higher torque applications.

Design for 316 stainless steel stem material, rather than 17–4PH, for superior corrosion resistance.

Tongue and Groove Design

Fully encapsulated body seals, allowing ends to be welded in-line, without time consuming and labor intensive disassembly when installed per Sharpe[®] welding instructions.

Design compensates for bolt expansion and reduces the chance of external leakage.

Helps prevent seal ruptures in high pressure or cryogenic applications.

Larger Bolt Design

Larger diameter body bolts to comply with Class 600.

Stem Sealing

Live-Loaded Stem

Concave and opposing spring washers provide additional compensation for seal wear.

Wear Resistance

The thrust washers are PEEK and/or nova for use in lower temperature applications.

ISO 5211 Top-Works Compatibility

The top-works offer compatibility for mounting a wide range of accessories.

Sharpe® actuators and accessories may be retrofitted on existing valves without disruption of line integrity.

Available Options

Anti-Static (standard with FS, fire-safe valves)

Static build-up is dissipated with an optional anti-static device in the stem.

Tamper Proof Locking Device

Cryogenic 3-Piece ball valves come standard with a lockable handle. The optional, Sharpe® exclusive, tamper proof locking device cannot be removed with a lock in place. When not being used with a lock its spring ensures the locking device snaps into place in the open or closed position to prevent unintended operation.

Technical Data

Note:

The practical pressure temperature rating of a valve is determined by the limitations of the body material and seat / seal material. The valve body ratings are based on ASME B16.34 rating for materials. The graphs are based on laboratory testing and our experience in the field. The seat ratings depend on the material, design, application, and function.

Sharpe[®] Seat Material

T – Virgin PTFE

Polytetrafluoroethylene is a Fluorocarbon-based polymer. This seating material has excellent chemical resistance and low coefficient of friction. Its temperature range is -100°F to 400°F (-73°C to 204°C). Color: white.

M – TFM[™] PTFE

3M Dyneon TFM[™] PTFE is a second generation PTFE with improved chemical and heat resistant properties over first generation PTFE and exhibits better stress recovery. Its temperature range is -100°F to 500°F (-73°C to 260°C) Color: white.

R – Reinforced Polytetrafluoroethylene (RTFE 15% Glass Filled). PTFE's mechanical properties are enhanced by adding filler material to provide improved strength, stability and wear resistance. Its temperature range is from -320°F to 450°F (-196°C to 204°C). Color: off-white

N – Nova

This is a Teflon base filled with glass amorphous carbon powder and graphite. It has a lower thermal contraction- expansion than PTFE, and is ideal for steam or thermal fluid applications. Its temperature range is from -50°F to 550°F (-45°C to 288°C). Color: black.

K – PCTFE

PCTFE is a fluorocarbon based polymer. It offers a unique combination of physical and mechanical properties: non-flammability, chemical resistance, and near zero moisture absorption. It has a temperature range of -400°F to 300°F (-240°C to 177°C). Note: PCTFE is frequently referred to as 3M's discontinued KEL-F® Brand.

Applications

Many processes are using cryogenic gases in different sectors of the industry.

Terminal Unloading Stations	High Purity Cryogenic / Gas Systems		
LNG Storage and Distribution	CO ₂ and Nitrogen Injection		
Air Separation Plants	Liquid and Gaseous Oxygen For Steel Production		
Gas Liquefaction	Transfer Lines		
Food processing	Cryogenic Transportation Trailers		

Boiling Point of Cryogenic liquids

6	Farmaula	Boiling	Liquid Density	
Gas	Formula	F°	C°	(lb/ft3)
Carbon Dioxide	CO2	-109	-78	50.6
Methane	CH₄	-258	-161	26.2
Natural Gas	LNG	-270	-168	26
Oxygen	02	-297	-183	71.2
Argon	Ar	-303	-186	87.4
Air		-318	-194	57.87
Nitrogen	N2	-320	-196	50.45
Hydrogen	H ₂	-423	-253	4.43
Helium	Не	-452	-269	7.82
Absolute Zero		-460	-273	

Parts & Materials

Notes:

*Parts used in repair kits.

**Parts used with NS, Anti-Static option. NS suffix required with FS (fire-safe) valves.

Building connections that last*

Series C80 Sizes $\frac{1}{2}$ " - 2" **Series FSC80** Sizes $\frac{1}{2}$ " - 2" **Series C89** Sizes $\frac{1}{4}$ " - 1 $\frac{1}{2}$ " **Series FSC89** Sizes $\frac{1}{4}$ " - 1 $\frac{1}{2}$ "

ltem	Description	Material	Qty.
1	Body	ASTM A351 CF8M (~ 316 SS)	1
2	End Piece	ASTM A351 CF8M (~ 316 SS) ASTM A351 CF3M (~ 316L SS) for weld connections	2
3	Ball (vented)	316 Stainless Steel	1
4*	Seat	PCTFE, TFM [™] , NOVA, RTFE or PTFE FSC80/FSC89 (fire-safe): PCTFE	2
5*	Body Seal	Graphite	2
6	Body Bolt	A193 Gr. B8	4
7	Body Nut	300 Series Stainless	4
Tags	Flow Direction & ID Nameplate	300 Series Stainless Steel	1 Each

Cryogenic Extension

Item	Description	Material	Qty.
9	Bonnet Extension	ASTM A351 CF8M (~ 316 SS)	1
10	Stem	316 Stainless Steel	1
10.1**	Anti-Static mini-Ball	300 Series Stainless	0 - 1
10.2**	Anti-Static Spring	Hard Drawn Stainless	0 - 1
11*	Bearing	PTFE	1
12.1*	Thrust Bearing Bottom	PEEK FSC80/FSC89 (fire-safe): Nova	1
12.2*	Thrust Bearing Top	Nova	1
13*	Bottom Packing	PCTFE, TFM™, NOVA	1
14*	Middle Packing	PCTFE, TFM™, NOVA	3 - 4
15*	Top Packing	PCTFE, TFM™, NOVA	1
16*	Stem Packing	FSC80/FSC89 (fire-safe): Graphite	2
17	Gland	300 Series Stainless	1 - 2
18*	Belleville Washer	Stainless Steel FSC80/FSC89 (fire-safe): Inconel	2 or 4
19	Packing Nut	300 Series Stainless	1
20	Nut Lock	300 Series Stainless	1
21	Handle	ASTM A351 CF8 (~304 SS)	1
22	Handle Nut	300 Series Stainless	1
23*	Bonnet Seal	Graphite	1
24	Lock Washer	300 Series Stainless	4
25	Bonnet Bolt	304 Stainless Steel A2-70	4
26	Lock Plate	300 Series Stainless	1
27	Stop Pin	300 Series Stainless	2

Parts & Materials

**Parts used with NS, Anti-Static option. NS suffix required with FS (fire-safe) valves.

*Parts used in repair kits.

Series C80 Sizes 2¹/₂" – 4" Series FSC80 Sizes 2¹/₂" - 4" Series C89 Sizes 2" – 3" Series FSC89 Sizes 2" - 3"

ltem	Description	Material	Qty.
1	Body	ASTM A351 CF8M (~ 316 SS)	1
2	End Piece	ASTM A351 CF8M (~ 316 SS), ASTM A351 CF3M (~ 316L SS) for welded connections	2
3	Ball (Vented)	316 Stainless Steel	1
4*	Seat	PCTFE, TFM™, NOVA, RTFE or PTFE FSC80/FSC89 (fire-safe): PCTFE	2
4.1	Seat Ring (C80 & FSC80)	ASTM A351 CF8M (~ 316 SS)	0 - 1
5*	Body Seal	Graphite	2
6	Body Bolt/Stud	A193 Gr. B8	4 or 16
7	Body Nut	300 Series Stainless Steel	4
Tags	Flow Direction & ID Nameplate	300 Series Stainless Steel	1 Each

Cryogenic Extension

ltem	Description	Material	Qty.
9	Bonnet Extension	ASTM A351 CF8M (~ 316 SS)	1
10	Stem	316 Stainless Steel	1
0.1**	Anti-Static mini-Ball	300 Series Stainless	0 - 2
0.2**	Anti-Static Spring	Hard Drawn Stainless	0 - 2
11*	Bearing	PTFE	1
12.1*	Thrust Bearing Bottom	PEEK FSC80/FSC89 (fire-safe): Nova	1
12.2*	Thrust Bearing Top	Nova	1
13*	Bottom Packing	PCTFE, TFM™, NOVA	1
14*	Middle Packing	PCTFE, TFM™, NOVA	4 - 6
15*	Top Packing	PCTFE, TFM™, NOVA	1
16*	Stem Packing	FSC80/FSC89 (fire-safe): Graphite	4 - 5
17	Gland	300 Series Stainless	1
18	Stop Plate	300 Series Stainless	1
19*	Belleville Washer	Stainless Steel FSC80/FSC89 (fire-safe): Inconel	4
20	Lock Tab	300 Series Stainless	1
21	Packing Nut	300 Series Stainless	1
22	Lock Plate	300 Series Stainless	1
23	Handle Pipe	300 Series Stainless	1
24	Wrench Block	ASTM A351 CF8 (~ 304 SS)	1
25	Wrench Bolt	300 Series Stainless	1
26*	Bonnet Seal	Graphite	1
27	Lock Washer	300 Series Stainless	4
28	Bonnet Bolt	300 Series Stainless	4
29	Stop Pin	300 Series Stainless	1

Port	Full Port	ØPORT	BW	Full Port	С	D	E	F	G	н	K (Thread)	м	ØP (PCD)	ØR	S	ØТ	х	Y
C80/ FSC80	C89/FSC89		А	А	-	_		-								<i>.</i>		
1⁄2"	1⁄4", 3⁄8"	0.44	2.91	-	1.27	12.30	6.42	13.97	11.57	1.81	M5-P0.8	0.264	F04 (1.65)	1.18	0.051	0.394	0.74	0.33
3⁄4"	1⁄2"	0.56	3.07	-	1.42	12.44	6.42	14.11	11.73	1.95	M5-P0.8	0.264	F04 (1.65)	1.18	0.051	0.394	0.74	0.33
1"	3⁄4"	0.81	3.72	13.10	1.74	12.91	7.28	14.54	12.09	2.39	M6-P1.0	0.343	F05 (1.97)	1.38	0.059	0.472	0.83	0.37
1¼"	1"	1.00	4.25	13.25	1.91	13.07	7.28	14.71	12.24	2.85	M6-P1.0	0.343	F05 (1.97)	1.38	0.059	0.472	0.83	0.37
1½"	1¼"	1.24	4.57	13.61	2.40	14.37	9.45	16.29	12.99	3.15	M8-P1.25	0.512	F07 (2.76)	2.17	0.059	0.709	1.41	0.54
2"	1½"	1.50	5.04	13.90	2.56	14.57	9.45	16.45	13.15	3.78	M8-P1.25	0.512	F07 (2.76)	2.17	0.059	0.709	1.41	0.54
21⁄2"	2"	2.00	6.34	14.21	3.58	16.02	15.75	17.15	14.33	4.92	M10-P1.5	0.630	F10 (4.02)	-	-	0.886	1.70	0.59
3"	2½"	2.50	6.65	14.87	3.98	16.65	23.62	18.17	14.72	6.30	M10-P1.5	0.807	F10 (4.02)	-	-	1.024	1.93	0.68
4"	3"	3.25	8.43	-	4.57	17.20	23.62	18.78	15.35	7.99	M10-P1.5	0.807	F10 (4.02)	-	-	1.024	1.93	0.68

Note: The dimensions above are for informational purposes only. Please refer to Sharpe® Valves if you need dimensions for construction.

Technical Data

Flow Data and Weight

Valve	e Size	0	Approx. Weight				
C80/FCS80	C89/FCS89	υ _γ	(lbs.)				
1⁄2"	1⁄4",3⁄4"	8	4				
3⁄4"	1⁄2"	12	4				
1"	3⁄4"	32	6				
1¼"	1"	46	8				
1½"	1¼"	80	13				
2"	1½"	120	16				
21⁄2"	2"	240	33				
3"	21⁄2"	350	38				
4"	3"	720	59				

Note: C_V values represent the flow of water at +60°F through the valve in U.S. gallons per minute at a pressure drop of 1 psi. The metric equivalent, K_V , is the flow of water at 16°C through the valve in cubic meters per hour at a pressure drop of 1 kg/cm². To convert C_V to K_V , multiply by 0.8569.

Applicable Standards

Basic Design	ASME B16.34, BS 6364					
Body Wall Thickness	ASME B16.34					
Butt-Weld Ends	ASME B16.25					
SW & Threaded Ends	ASME B16.11					
Mounting Dimensions	ISO 5211					
Marking	MSS-SP 25					
Pressure Test	API 598, MSS-SP 72					
Fire Safe (FS Series)	API 607 7th Edition					

Cryogenic Valve Preparation

All cryogenic valves are shell tested, then completely disassembled. All parts are cleaned and degreased, per Sharpe Standard, in our clean room. The dry parts are then assembled. The assembled valve undergoes a seat and seal pressure test with nitrogen. The completed tested valve is packaged in polyethylene bags before leaving the clean room.

Traceability

Heat numbers are provided on all valve bodies and ends. CMTR's (certified mill test reports) are available upon request.

Automated Assemblies

Valves, actuators, and accessories are designed to work together; delivering exceptional performance.

Visit our website to select pneumatic actuators, electric actuators, positioners, limit switches, and other accessories.

Series C80/FSC80 & C89/FSC89 Cryogenic, 3-Piece Ball Valve

How to order Sharpe[®] Series C80/FSC80 & C89/FSC89

1.5	"	FSC89	(6	6	6	6	К	I	(5	-	SW/	ΤE	-	NSTP	
Size	Size Series		Bo Mat	Body End laterial Materia		Ball Material	Stem Material	Seat Material	Body Seal	Stem Packing		End S		tyle		Suffixes & Options	
	Size		V	alve Ser	ies	Ball M	aterial	Body	Seal		End S	Style			Suffix	es & Options	
C80	C89	Class	C80	Standa	ard Port	6 316 Stair	nless Steel	I Graphi	e	TE	Threade	ed End	s		Fo	r C80, C89	
-	1/4"	600	FSC80	Standa Fire Sa	ard Port	Stem N	laterial	Stem F	Packing	SW	Socketv	veld		HC	High (Cycle Stem*	
-	3/8 "	600	C89	Full Pc	ort	6 316 Stai	nlass Staal		000	BW10	Buttwel	d SCH	10*	NS	Anti-S	tatic*	
1⁄2"	1/2"	600	50000	Full Pc	ort		11033 01001	080	, 689	BW40	Buttwel	d SCH	40	тр	Tamp	er Proof **	
3⁄4"	3⁄4"	600	FSC89	Fire Sa	afe	Seat Material		M TFM™		Additonal Ends				Locking Device			
1"	1"	600	Bo	odv Mate	erial	C80, C89		N NOVA		C89 & FSC89 Only			lv	Ball with upstream vent (standard)			
1¼"	1¼"	600	6 405	1 000	(21600)	K PCTFE (Note 1)	T PTFE			0090100				[ar [
1½"	1½"	600	0 A33		(~31033)	M TFM™		FSC80	FSC89	BM80	Buttwel	d SCH	80		Fire	safe Valves	
2"	2"	600	E	nd Mate	rial	N NOVA		G Graphi	te	EBW	Buttwel	d SCH	80	NO	Requi	red - add code	
2½"	-	600	1051		(R RTFE					LAteriae	.u		NS	Anti-S	tatic	
-	21⁄2"	300	A331		(~310.55)	T PTFE								тр	Tamp	er Proof	
3"	3" 3" 300		6 Weld	l Connec	ctions:	FSC80,	FSC89								Lockii	ng Device **	
4"	-	300	A351	I CF3M	(~316 SS)	K PCTFE (Note 1)							Ball w	ith upst	eam vent (standard)	
Note:								-						Note:			

*Price On Application

**Series C80/FSC80: 2" & Smaller. Series C89/FSC89: 1½" & Smaller. PCTFE is frequently referred

to as 3M's discontinued KEL-F[®] Brand.

Other materials & options available, please contact us with your requirement. Responsibility for proper selection,

use and maintenance of any product remains solely with the purchaser and end user.

We reserve the right to modify or improve the designs or specifications of any product at any time without notice. 3M™ Dyneon™ TFM™ are trademarks owned by 3M.

Building connections that last

Sharpe[®] Series 70/FS70

High Performance Flanged Full Port Ball Valve

Stem Sealing

Increased Stem Sealing Area

Allows for a range of sealing combinations for severe applications and other stringent design demands.

Live-Loaded Stem

Two pairs of concave and opposing spring washers provide additional compensation for seal wear.

Safe Design

Blowout proof stem ensures the stem cannot be blown out by accidental medium pressure rise.

Wear Resistance

The thrust washer is either metallic for higher temperatures and wear resistance, or PEEK for lower temperatures.

Anti-Static

Static build-up discharges by anti-static device in stem or the metallic thrust washer.

Stem Assemblies

Various stem assemblies are available based on application requirements.

Standard – A multiple pack of Chevron "V" shaped stem seals for better sealing in TFM[®] or Nova materials.

High Temperature – Double pack of flexible graphite seals for sealing under high temperature conditions.

Fugitive Emission – Two-pack stem seals in PTFE or graphite, with lantern ring to allow leak detection through the emission port(s).

High Cycle – Unique design for demanding high cycle applications that consist of multi-system sealing devices in the stem bonnet. High Perofrmance Flanged Full Port Valve

Stem Trim for Sizes Greater Than 3"

According to API 608 all valve sizes greater than 3" have an adjustable packing gland with thru bolt holes. Gland bolts pass through the holes and thread to the valve body. The position stops are bolted to the body and are not integral to the packing gland, gland flange or gland bolting.

Rugged Body

Rugged body, (316 Stainless Steel, Carbon Steel, or Alloy 20) with higher and deeper stem packing area to allow for more stem seals. Two cast bosses for optional fugitive emission ports. Larger ISO 5211 bolt pattern for handling higher valve torques.

Heavy Duty Stem Design

Stem diameters have been increased to meet the higher torque requirements of the most demanding applications. Stem to ball contact area is wider and larger, allowing the valve to be used for higher torque applications. Design allows for the use of 316 stainless steel stem material, rather than 17–4PH, for superior corrosion resistance.

Floating Ball Design

Solid stainless steel ball with wide selection of configurations for a variety of applications including; diverting, mixing, controlling, flushing, purging and more. Floating ball seals on the downstream seat, reducing torque and assuring a bubble-tight shutoff.

ISO 5211 Top-Works Compatibility

The top-works offer compatibility for mounting a wide range of accessories. Sharpe® actuators and accessories may be retrofitted on existing valves without disruption of line integrity.

Unique Handle

A unique cast stainless steel handle specially designed to accommodate locking devices and high operating torques. A comfortable, ergonomic, non-slip, hand grip design. Handle length according to API 608 requirements.

Tamper Proof Locking Device

All Sharpe® Valves come standard with a lockable handle. The optional, Sharpe® exclusive, tamper proof locking device cannot be removed with a lock in place. When not being used with a lock its springs ensure the locking device snaps into place in the open or closed position to prevent accidental operation.

Fugitive Emission Assembly

High Cycle Assembly

Stem Trim for Sizes Greater Than 3"

Accessories

Integrated Fugitive Emission Ports

One or two ports can be drilled and tapped into our specially designed body.

Ports align with a lantern ring precisely located between an upper and lower set of stem packing to allow monitoring of emissions.

Lockable Stem Extension

An option to move the valve top interface away from the pipe line to accommodate insulation.

Tamper Proof Locking Device

Upgrade from the standard locking device found on all Sharpe® Valves to our unique spring loaded Tamper Proof Locking Device.

Spring Return Handle

Spring return handle ensures that the valve cannot be left open (or closed).

Cast Mounting Brackets

Cast stainless steel brackets with hole patterns conforming to ISO 5211 on top and bottom for actuation mounting.

Safety locking holes for securing valves during maintenance (requires special coupler).

Aesthetic design offers wide tool clearance for installation and open visual.

Steam Jackets

Steam jackets enables the valves to be kept at a controlled temperature.

Series 70/FS70 High Performance Flanged Full Port Ball Valve

Sizes $(\frac{1}{2}" - 2")$

Item Description

Parts & Materials

Fire Safe Packing

1	Body	Carbon Steel ASTM A216 WCB 316 Stainless Steel ASTM A351 CF8M Alloy 20 ASTM A351 CN7M ***	1
2	End Piece	Carbon Steel ASTM A216 WCB 316 Stainless Steel ASTM A351 CF8M Alloy 20 ASTM A351 CN7M ***	1
3	Ball	316 Stainless Steel Alloy 20 ***	1
4*	Seat	PTFE, RTFE, TFM®, Nova, PEEK, Super Nova	2
5*	Body Seal	PTFE, TFM [®] , Graphite, Impregnated Graphite	1
6	Stem	316 Stainless Steel 17-4PH Alloy 20 ***	1
7*	Thrust Bearing - Bottom	Nova, PEEK	1
8*	Thrust Bearing - Top	Nova	1
9*	Stem Packing - Bottom	PTFE, TFM [®] , Nova	2
10***	Stem Packing - Middle	PTFE, TFM [®] , Nova	2
11*	Stem Packing - Top	PTFE, TFM [®] , Nova	2
12*	Stem Packing	Graphite (FS or high temperature)	2
13	Lantern Ring	300 Series Stainless Steel	1
14	Gland	300 Series Stainless Steel	1
15*	Belleville Washer	17-7PH	4
16	Packing Nut	300 Series Stainless Steel	1
17	Lock Tab	300 Series Stainless Steel	1
18	Handle	304 Stainless Steel ASTM A351 CF8	1
19	Handle Nut	300 Series Stainless Steel	1
20	Anti - Static Ball	300 Series Stainless Steel	1
21	Anti - Static Spring	Hard Drawn Stainless Steel	1
22	Stop Pin	300 Series Stainless Steel	2
23	Lock Plate	300 Series Stainless Steel	1
24	Stud	A193 Gr. B8A	4
25	Nut	300 Series Stainless Steel	4

Material

Qty.

Note:

The quantities listed in the stem arrangement are for fugitive emission assemblies. Standard stem assemblies carry more seals and no lantern rings.

Repair Kit item.

** Middle stem packing is only used from size 1-1/2" and above.

*** Other materials available, call to discuss your special requirements.

Building connections that last*

.....

12-----

High Temperature or Chevron Fire Safe Packing

Sizes (2½" - 4")

ltem	Description	Material	Qty.
1	Body	Carbon Steel ASTM A216 WCB 316 Stainless Steel ASTM A351 CF8M Alloy 20 ASTM A351 CN7M	1
2	End Piece	Carbon Steel ASTM A216 WCB 316 Stainless Steel ASTM A351 CF8M Alloy 20 ASTM A351 CN7M	1
3	Ball	316 Stainless Steel Alloy 20	1

11. 10

13

-10 -9

(Continued)

Item	Description	Material	Qty.
4*	Seat	PTFE, RTFE, TFM [®] , Nova, PEEK	2
5*	Body Seal	PTFE, Graphite	1
6	Stem	Stainless Steel 17-4PH Alloy 20	1
7*	Thrust Bearing - Bottom	Nova, PEEK	1
8*	Thrust Bearing - Top	Nova	1
9*	Stem Packing - Bottom	PTFE, TFM [®] , Nova	2
10*	Stem Packing - Middle	PTFE, TFM [®] , Nova	2
11*	Stem Packing - Top	PTFE, TFM [®] , Nova	2
12*	Stem Packing	Graphite (Fire safe or high temperature)	4
12a	Gland Position Ring	300 Series Stainless Steel	1
13	Lantern Ring	300 Series Stainless Steel	1
13a	Gland (size 4" only)	316 Stainless Steel A351 CF8M	1
14	Gland	300 Series Stainless Steel	1
15	Stop Plate	300 Series Stainless Steel	1
16*	Belleville Washer	17-7PH	4
16a	Belleville Washer	17-7PH	16
16b	Washer	300 Series Stainless Steel	4
17	Lock Tab	300 Series Stainless Steel	1
17a	Gland Bolt	300 Series Stainless Steel	2
18	Packing Nut	300 Series Stainless Steel	1
18a	Retainer Spring	300 Series Stainless Steel	1
19	Lock Plate	300 Series Stainless Steel	1
19a	Retainer Lock	300 Series Stainless Steel	1
20	Wrench Block	304 Stainless Steel ASTM A351 CF8	1
21	Handle Pipe	Stainless Steel Zinc Plated Carbon Steel	1
22	Wrench Bolt	300 Series Stainless Steel	1
23	Anti-Static Ball	300 Series Stainless Steel	2
24	Anti-Static Spring	Hard Drawn Stainless Steel	2
25	Body Stud	A193 Gr. B8A	6/8
26	Body Nut	300 Series Stainless Steel	6/8
27	Stop Pin	300 Series Stainless Steel	1/2
28	Stop Pin Sleeve	300 Series Stainless Steel	2

Note: The quantities listed in the stem arrangement are for fugitive emission assemblies. Standard stem assemblies carry more seals and no lantern rings.

* Repair Kit item.

Parts & Materials

Series 70/FS70 High Performance Flanged Full Port Ball Valve

Dimensions (Inches)

SIZE	ØPORT	A Class 150	A Class 300	B Class 150	B Class 300	С	D	E	F	ØH Class 150	ØH Class 300	K (Thread)	М	ØP (PCD)	Q	ØR	S	ØT	х	Y
1/2"	0.56	4.25	5.50	1.96	2.36	1.41	2.15	6.42	3.54	3.50	3.75	M5-P0.8	0.264	F04 (1.65)	0.27	1.18	0.051	0.394	0.74	0.33
3/4"	0.82	4.62	6.00	2.13	2.52	1.53	2.27	6.42	3.66	3.88	4.61	M5-P0.8	0.264	F04 (1.65)	0.37	1.18	0.051	0.394	0.74	0.33
1"	1.00	5.00	6.50	2.13	2.72	1.93	2.74	7.28	3.73	4.25	4.88	M6-P1.0	0.343	F05 (1.97)	0.39	1.38	0.059	0.472	0.81	0.30
11⁄2"	1.50	6.50	7.50	2.97	3.21	2.56	3.97	9.45	5.28	5.00	6.12	M8-P1.25	0.512	F07 (2.76)	0.47	2.17	0.059	0.709	1.41	0.48
2"	2.00	7.00	8.50	3.25	3.37	2.94	4.35	9.45	5.87	6.00	6.50	M8-P1.25	0.512	F07 (2.76)	0.47	2.17	0.059	0.709	1.41	0.48
21/2"	2.50	7.50	9.50	3.58	4.00	3.98	5.91	23.62	7.48	7.01	7.52	M10-P1.5	0.807	F10 (4.02)	0.77	-	-	1.024	1.92	0.65
3"	3.00	8.00	11.12	3.83	4.20	4.25	6.18	23.62	7.64	7.52	8.27	M10-P1.5	0.807	F10 (4.02)	0.77	-	-	1.024	1.93	0.65
4"	3.94	9.00	12.00	4.61	5.06	4.90	6.83	23.62	8.28	9.02	10.00	M10-P1.5	0.807	F10 (4.02)	0.77	-	-	1.024	1.93	0.65

Note: The dimensions above are for informational purposes only. Please contact Sharpe® Valves if you need dimensions for construction.

Technical Data

Note:

The practical pressure-temperature rating of a valve is determined by the limitations of the body material and seat/seal material. An application's maximum pressure-temperature conditions must be below the body rating curve, and left of the seat material curve. The valve body ratings are based on ASME B16.34 rating for materials.

The graph is based on laboratory testing and installed field experience.

The seat ratings depend on the material, design, application and function.

Sharpe[®] Seat Materials

T - Virgin PTFE

Polytetrafluoroethylene is a Fluorocarbon-based polymer. This seating material has excellent chemical resistance and low coefficient of friction. Its temperature range is -100° F to 400° F (-73° C to 204° C). Color – white.

M – TFM[®] PTFE

Dyneon TFM[®] PTFE is a second generation PTFE with improved chemical and heat resistant properties over first generation PTFE and exhibits better stress recovery. Its temperature range is -100°F to 500°F (-73°C to 260°C). Color – white.

R - Reinforced Polytetrafluoroethylene (RTFE 15% Glass Filled).

PTFE's mechanical properties are enhanced by adding filler material to provide improved strength, stability, and wear resistance. Its temperature range is from -320° F to 450° F (-196° C to 204° C). Color-off-white.

N – Nova

A PTFE base filled with glass amorphous carbon powder and graphite. It has a lower thermal contraction / expansion than PTFE, and is ideal for steam or thermal fluid applications. Its temperature range is from -50°F to 550°F (-45°C to 288°C). Color – black. **B – Super Nova** is a free-flowing compound based on TFM[®] containing electro-graphitized carbon. It features: increased thermal dimensional stability and surface hardness, improved deformation under load, reduced friction and wear, and good chemical stability. It has a high limiting oxygen index (LOI), low coefficient of friction, very good mechanical properties and exceptional temperature resistance. It is used as a seat material in chemical processing and automotive industries. It is ideal to use with steam and thermal fluid applications up to 550°F (288°C) and as low as -40°F (-40°C). Color – black.

P – PEEK (Unfilled) Polyetheretherketone

PEEK Polymer offers a unique combination of chemical, mechanical and thermal properties. Excellent for water and steam applications at elevated temperatures up to 600°F (315°C). Color – beige.

Other seat materials

Other seat material are available, please contact us with your requirements.

Technical Data

Technical Information

Size	0	Approx. Weight Lbs						
5120	Cγ	Class 150	Class 300					
1⁄2"	26	4	5					
3⁄4"	50	5	8					
1"	94	7	10					
1½"	260	15	20					
2"	480	23	28					
21/2"	730	39	47					
3"	1100	45	62					
4"	2100	65	94					

Applicable Standards

Wall Thickness	ASME B16.34				
Face to Face Dimensions	ASME B16.10				
Fugitive Emission	ISO 15848-1 (with I or N stem packing)				
Flange Dimensions	ASME B16.5				
Basic Design	ASME B16.34, API 608 5th Ed				
Fire Safe	API 607 6th Ed (FS70 only)				
Pressure Test	API 598, MSS-SP 72				
Mounting Dimensions	ISO 5211				
NACE (Only with 316 SS Stem)	MR-0175 / ISO 15156				
Marking	MSS-SP 25				

Notes:

3M[™] Dyneon[™] TFM[™] are trademarks owned by 3M.

Series 70/FS70 High Performance Flanged Full Port Ball Valve

How to order Sharpe[®] Series 70/FS70

3"	FS70	1	-	6	6	6	R	G	G	-	1/1	-		-	
Size	Series	Class		Body/ Ends	Ball	Stem	Seat	Body Seal	Stem Packing		Ends		Service		Options

Size	Series	Body & Ends	Seat	Body Seal	Ends	Options		
1/2"	70 Full Port	4 Carbon Steel	B Super	G Graphite	1/1 Class 150	OH Oval Handlet		
3⁄4"	FS70 Fire Safe	(WCB)	Nova	Impregnated	Flanged RF	F1 1 Emission Port		
1"	CF70 Cavity Fill	Stainless 6 Steel (CF8M)	RTFE P 15%	Graphite	3/3 Class 300 Flanged RF	F2 2 Emission Ports		
1½"	Fire Safe valve	~316 SS	Glass Filled	M IFM®	1E/1E Class 150	L Lockable Stem Extension‡		
2"	must use: Graphite or Impregnated	2 Alloy 20 (CN7M)*	M TFM®		Flanged FF	VB Vented Ball		
2½"	Graphite Body Seals and Stem		N Nova	Stem Packing	3F/3F Class 300 Flanged FF	SJ Oil Jacket with 2 Ports		
3"	RTFE, TFM®, Nova,	Ball	D Virgin	G Graphite		SJ3 Steam Jacket with 3 Ports		
4"	Cavity Filler Seats	316 6 Staiplaga	PEEK	Impregnated	Service	TP Tamper Proof Locking Device		
	available in PTFE.	Steel	T PTFE	Graphite	MN Ammonia Service (1)(2)	DMH Spring Return Handle§		
	Class	2 Alloy 20*		TFM®	Silicone Free	HC High Cycle Stem		
	1 150			N Nova	SF (1)(3)	Packing Nut Design 4" Only		
	3 300	Stem		T PTFE	U Vacuum (1)(3)	(Not API 608)		
	·	316 6 Stainless Steel			X Oxygen Service (1)(3)(4)	 † Up to 1½" ‡ 3½" up to 1" valves. 4" on larger valves. 		
		7 17-4PH			*(1) Per Sharpe Standard	§ Call Sharpe® Valves for sizing / application of DMH (up to 1")		
		2 Alloy 20*			(2) 70 or FS70 (3) 70 or CF70			
Note:					(4) No impregnated graphite			

* POA.

Other materials / options available, please contact us with your requirement.

Neither ASC Engineered Solutions nor any of its affiliated entities assumes responsibility for the selection, use, and maintenance of any product. Responsibility for the selection, use, and maintenance of any product remains solely with the purchaser and end user.

ASC Engineered Solutions reserves the right to modify or improve the designs or specifications of any product at any time without notice.

Building connections that last*

Sharpe[®] Series 74/FS74

High Performance Flanged Standard Port Ball Valve

Design & Features

Stem Sealing

Increased Stem Sealing Area

Allows for a range of sealing combinations for severe applications and other stringent design demands.

Live-Loaded Stem

Two pairs of concave and opposing spring washers provide additional compensation for seal wear.

Safe Design

Blowout proof stem ensures the stem cannot be blown out by accidental medium pressure rise.

Wear Resistance

The thrust washer is either metallic for higher temperatures and wear resistance, or PEEK for lower temperatures.

Anti-Static

Static build-up discharges by anti-static device in stem or the metallic thrust washer.

Stem Assemblies

Various stem assemblies are available based on application requirements.

Standard – A multiple pack of Chevron "V" shaped stem seals for better sealing in TFM[®] or Nova materials.

High Temperature – Double pack of flexible graphite seals for sealing under high temperature conditions.

Fugitive Emission – Two-pack stem seals in PTFE or graphite, with lantern ring to allow leak detection through the emission port(s).

High Cycle – Unique design for demanding high cycle applications that consist of multi-system sealing devices in the stem bonnet. High Performance Flanged Standard Port Ball Valve

Stem Trim for Sizes Greater Than 3" -

According to API 608 all valve sizes greater than 3" have an adjustable packing gland with thru bolt holes. Gland bolts pass through the holes and thread to the valve body. The position stops are bolted to the body and are not integral to the packing gland, gland flange or gland bolting.

Rugged Body

Rugged body, (316 Stainless Steel, Carbon Steel, or Alloy 20) with higher and deeper stem packing area to allow for more stem seals. Two cast bosses for optional fugitive emission ports. Larger ISO 5211 bolt pattern for handling higher valve torques.

Heavy Duty Stem Design

Stem diameters have been increased to meet the higher torque requirements of the most demanding applications. Stem to ball contact area is wider and larger, allowing the valve to be used for higher torque applications. Design allows for the use of 316 stainless steel stem material, rather than 17–4PH, for superior corrosion resistance.

Floating Ball Design

Solid stainless steel ball with wide selection of configurations for a variety of applications including; diverting, mixing, controlling, flushing, purging and more.

Floating ball seals on the downstream seat, reducing torque and assuring a bubble-tight shutoff.

ISO 5211 Top-Works Compatibility

The top-works offer compatibility for mounting a wide range of accessories. Sharpe® actuators and accessories may be retrofitted on existing valves without disruption of line integrity.

Unique Handle

A unique cast stainless steel handle specially designed to accommodate locking devices and high operating torques. A comfortable, ergonomic, non-slip, hand grip design. Handle length according to API 608 requirements.

Tamper Proof Locking Device

All Sharpe® Valves come standard with a lockable handle. The optional, Sharpe® exclusive, tamper proof locking device cannot be removed with a lock in place. When not being used with a lock its springs ensure the locking device snaps into place in the open or closed position to prevent accidental operation.

Accessories

Integrated Fugitive Emission Ports

One or two ports can be drilled and tapped into our specially designed body. Ports align with a lantern ring precisely located between an upper and lower set of stem packing to allow monitoring of emissions.

Lockable Stem Extension

An option to move the valve top interface away from the pipe line to accommodate insulation.

Tamper Proof Locking Device

Upgrade from the standard locking device found on all Sharpe® Valves to our unique spring loaded Tamper Proof Locking Device.

Spring Return Handle

Spring return handle ensures that the valve cannot be left open (or closed).

Cast Mounting Brackets

Cast stainless steel brackets with hole patterns conforming to ISO 5211 on top and bottom for actuation mounting.

Safety locking holes for securing valves during maintenance (requires special coupler).

Aesthetic design offers wide tool clearance for installation and open visual.

Steam Jackets

Steam jackets enables the valves to be kept at a controlled temperature.

Fugitive Emission Monitoring with Lantern Ring Packing

Chevron

.....

Parts & Materials

Sizes (1" - 2")

Item	Description	Material	Qty.
1	Body	Carbon Steel ASTM A216 WCB 316 Stainless Steel ASTM A351 CF8M Alloy 20 ASTM A351 CN7M ***	1
2	End Piece	Carbon Steel ASTM A216 WCB 316 Stainless Steel ASTM A351 CF8M Alloy 20 ASTM A351 CN7M ***	1
3	Ball	316 Stainless Steel Alloy 20 ***	1
4*	Seat	PTFE, RTFE, TFM [®] , Nova, PEEK	2
5*	Body Seal	PTFE, Graphite	1
б	Stem	316 Stainless Steel 17-4PH Alloy 20 ***	1
7*	Thrust Bearing - Bottom	Nova, PEEK	1
8*	Thrust Bearing - Top	Nova	1
9*	Stem Packing - Bottom	PTFE, TFM [®] , Nova	2
10*,**	Stem Packing - Middle	PTFE, TFM [®] , Nova	2
11*	Stem Packing - Top	PTFE, TFM [®] , Nova	2
12*	Stem Packing	Graphite (FS or high temperature)	2
13	Lantern Ring	300 Series Stainless Steel	1
14	Gland	300 Series Stainless Steel	1
15*	Belleville Washer	17-7PH	4
16	Packing Nut	300 Series Stainless Steel	1
17	Lock Tab	300 Series Stainless Steel	1
18	Handle	304 Stainless Steel ASTM A351 CF8	1
19	Handle Nut	300 Series Stainless Steel	1
20	Anti - Static Ball	300 Series Stainless Steel	1
21	Anti - Static Spring	Hard Drawn Stainless Steel	1
22	Stop Pin	300 Series Stainless Steel	2
23	Lock Plate	300 Series Stainless Steel	1

Note:

The quantities listed in the stem arrangement are for fugitive emission assemblies. Standard stem assemblies carry more seals and no lantern rings.

* these parts are used in repair kits.

- ** middle stem packing is only used from size 1-1/2" and above.
- *** Other materials available, call to discuss your special requirements.

12

Parts & Materials

ltem	Description	Material	Qty.
3	Ball	316 Stainless Steel Alloy 20	1
4*	Seat	PTFE, RTFE, TFM [®] , Nova, PEEK	2
5*	Body Seal	PTFE, Graphite	1
6	Stem	Stainless Steel 17-4PH Alloy 20	1
7*	Thrust Bearing - Bottom	Nova, PEEK	1
8*	Thrust Bearing - Top	Nova	1
9*	Stem Packing - Bottom	PTFE,TFM [®] , Nova	2
10*	Stem Packing - Middle	PTFE,TFM [®] , Nova	2
11*	Stem Packing - Top	PTFE,TFM [®] , Nova	2
12*	Stem Packing	Graphite (FS or high temperature)	4
12a	Gland Position Ring	300 Series Stainless Steel	1
13	Lantern Ring	300 Series Stainless Steel	1
13a	Gland (size 4" only)	316 Stainless Steel A351 CF8M	1
14	Gland	300 Series Stainless Steel	2
15	Stop Plate	300 Series Stainless Steel	1
16	Belleville Washer	17-7PH	4
16a	Belleville Washer	17-7PH	16
16b	Washer	300 Series Stainless Steel	4
17	Lock Tab	300 Series Stainless Steel	1
17a	Gland Bolt	300 Series Stainless Steel	2
18	Packing Nut	300 Series Stainless Steel	1
18a	Retainer Spring	300 Series Stainless Steel	1
19	Lock Plate	300 Series Stainless Steel	1
19a	Lock Plate	300 Series Stainless Steel	1
20	Wrench Block	304 Stainles Steel ASTM A351CF8	1
21	Handle Pipe	Stainless Steel Zinc Plated Carbon Steel	1
22	Wrench Bolt	300 Series Stainless Steel	1
23	Anti-Static Ball	300 Series Stainless Steel	2
24	Anti-Static Spring	Hard Drawn Stainless Steel	2
25	Stop Pin	300 Series Stainless Steel	1/2
26	Stop Pin Sleeve	300 Series Stainless Steel	2

Note: The quantities listed in the stem arrangement are for fugitive emission assemblies. Standard stem assemblies carry more seals and no lantern rings.

* these parts are used in repair kits.

Building connections that last*

Q

Series 74/FS74 1" - 2"

Dimensions (Inches)

Size	ØPORT	A Class 150	A Class 300	B Class 150	B Class 300	С	D	E	F	ØH Class 150	ØH Class 300	K (Thread)	М	ØP (PCD)	Q	ØR	S	ØT	х	Y
1"	0.81	5.00	6.50	2.70	2.72	1.53	2.28	6.40	3.68	4.25	4.88	M5-P0.8	0.264	F04 (1.65)	0.57	1.181	0.394	0.394	0.74	0.37
1½"	1.24	6.50	7.50	3.35	3.21	2.40	3.82	9.45	5.35	6.10	6.12	M8-P1.25	0.512	F07 (2.76)	0.47	2.165	0.059	0.709	1.41	0.54
2"	1.50	7.00	8.50	3.86	5.35	2.56	3.98	9.45	5.51	6.50	6.50	M8-P1.26	0.512	F07 (2.76)	0.47	2.165	0.059	0.709	1.41	0.54
3"	2.50	8.00	11.12	3.82	6.93	3.98	5.90	23.6	7.36	7.52	8.27	M10-P1.5	0.807	F10 (4.02)	0.77	NA	NA	1.024	1.93	0.68
4"	3.25	9.00	12.00	4.80	7.79	4.59	6.50	23.6	7.95	9.02	10.0	M10-P1.5	0.807	F10 (4.02)	0.77	NA	NA	1.024	1.93	0.68

ØН

Note: The dimensions above are for informational purposes only. Please refer to Sharpe® Valves if you need dimensions for construction.

В

A

Note:

The maximum pressure / temperature ratings of the valve assemblies are limited to lowest of the body or seat material fitted. The valve body ratings are based on ASME B16.34 rating for materials. The graphs are based on laboratory testing and our experience in field. The seat ratings depend on the material, design, application and function.

Sharpe® Seat Materials

T – Virgin PTFE

Polytetrafluoroethylene is a Fluorocarbon-based polymer. This seating material has excellent chemical resistance and low coefficient of friction. Its temperature range is -100° F to 400° F (-73° C to 204° C). Color - white.

M – TFM® PTFE

Dyneon TFM[®] PTFE is a second generation PTFE with improved chemical and heat resistant properties over first generation PTFE and exhibits better stress recovery. Its temperature range is -100°F to 500°F (-73°C to 260°C). Color – white.

R – Reinforced Polytetrafluoroethylene

(RTFE 15% Glass Filled). PTFE's mechanical properties are enhanced by adding filler material to provide improved strength, stability and wear resistance. Its temperature range is from -320°F to 450°F (-196°C to 204°C). Color-off-white.

N – Nova

This is a Teflon base filled with glass amorphous carbon powder and graphite. It has a lower thermal contractionexpansion than PTFE, and is ideal for steam or thermal fluid applications. Its temperature range is from -50°F to 550°F (-45°C to 288°C). Color - black.

B - Super Nova

A free-flowing compound based on TFM® containing electro-graphitized carbon. It features: increased thermal dimensional stability and surface hardness, improved deformation under load, reduced friction and wear, and good chemical stability. It has a high limiting oxygen index (LOI), low coefficient of friction, very good mechanical properties and exceptional temperature resistance. It is used as a seat material in chemical processing and automotive industries. It is ideal to use with steam and thermal fluid applications up to 550°F (288°C) and as low as -40°F (-40°C). Color - black.

P - PEEK (Unfilled) Polyetheretherketone

PEEK Polymer offers a unique combination of chemical, mechanical and thermal properties. Excellent for water and steam applications at elevated temperatures up to 600°F (315°C). Color – beige.

Other seat materials

Other seat material are available according to the application, such as very high temperature or cryogenic conditions.

Building connections that last

Technical Information

	Flow	Approx. Weight Lbs					
Valve Size	Coeff.Cv	Class 150	Class 300				
1"	30	8	11				
11⁄2"	82	18	24				
2"	120	21	25				
3"	350	39	49				
4"	720	65	85				

Applicable Standards

Wall Thickness	ASME B16.34				
Face to Face Dimensions	ASME B16.10				
Fugitive Emission	ISO 15848-1 (with I or N stem packing)				
Flange Dimensions	ASME B16.5				
Basic Design	ASME B16.34, API 608 5th Edt.				
Fire Safe	API 607 6th Edt. (FS74 only)				
Pressure Test	API 598, MSS-SP 72				
Mounting Dimensions	ISO 5211				
NACE (Only with 316 SS Stem)	MR-0175 / ISO 15156				
Marking	MSS-SP 25				

Notes: TFM[®] is a registered trademark of Dyneon, LLC.

Series 74/FS74 High Performance Flanged Standard Port Ball Valve

How to order Sharpe[®] Series 74/FS74

1"	FS74	1	-	6	6	6	R	G	G		-	1/1	-	Χ	-	ОН
Size	Series	Class		Body/Ends	Ball	Stem	Seat	Body Seal	Sten Packi	n ng		Ends		Service		Options
Size	S	eries		Body & Ends	_ _	Seat	_ _	Body Seal			Ends			Opt	tions	
1"	74	Reduced Port		2 Alloy 20*	В	Super Nova	G	Graphite		1	Class Flange	150 ed RF	OH	Oval Han	dle*	
11/2"	FS74	Fire Safe		4 Carbon Steel		RTFE	1	Impregna Graphite	ated	1F	Class	150	F1	1 Emissio	on Port	
	Fire Safe	valve		316 Stainless	R	15% Glass Filled	M	1 TFM®			Class	300	 	Lockable	Stem Ext	ension**
4"	must use or Impreg	e: Graphite gnated	_	Steel		TFM®	— <u> </u>	PTFE		3	Flange	ed RF	VB	Vented Ba	all	
	and Sten	Body Seals 1 Packing. FE. TFM®.	-	Ball	N	Nova		Stem Packir	ng	3F	Class Flange	300 ed FF	SJ	Steam Ja	cket	
	Nova, Su Seats.	per Nova		2 Alloy 20*	Т	PTFE	G	Graphite					SJ3	Steam Ja	cket With	n 3 Outlets
		lass	- -	316	P	Virgin PEEK	1	Impregna Graphite	ated		Servic	e	TP	Tamper P	Proof Loci	king Device
	1	150	- _	Steel	_		M	1 TFM®		Х	Oxygen Service**			Spring Return Handle***		
	3	300	- -		_		N	Nova		U	Vacu	um		Packing N		n 4" Only
			- -	Stem			Т	PTFE		MN	Amm Servi	onia ce	F 114		iut Desig	IT4 UIIIy
				2 Alloy 20 316 5 Stainless						SF	Silico Free	ne **	0p to ** 3–¹/₄" *** Call SI	∠ up to 1", 4" or harpe® Valves	n larger va s for sizing	alves
			-	Steel 7 17-4PH						** Pei Sta	⁻ Sharpe Indard	0	applic	ation of DMH	l (1" and u	nder only)

Note:

Responsibility for proper selection, use and maintenance of any product remains soley with the purchaser and end user. We reserve the right to modify or improve the designs or specifications of any product, at any time without notice. Other materials & options are available, please contact us with your requirements.

Building connections that last*

Building connections that last

Sharpe[®] Series 75

High Purity Tube Full Port 3 & 4–Way Ball Valve

Design & Features

High Purity Tube Full Port 3 & 4-Way Ball Valve

Body Material

316 Stainless Steel.

Four Seat Design

Three & four way Series 75 valves utilize four seats to securely support the ball.

Flow Plans

A variety of flow plans are available in both "T" and "L" port configurations.

Stem Design

Live-loaded, bottom entry, blowout proof, anti-static stem featuring packing that extends valve cycle life over conventional ball valves an dis best choice for actuation

Stem seals are live-loaded using Belleville springs to provide consistent sealing forces, reducing or eliminating the need for frequent seal adjustment.

ISO 5211 Integral Mounting Pad

Direct mount pad eliminates need for brackets and couplers*.

Ideal for actuation.

Actuators may be retrofitted on existing Sharpe® Series 75 without disruption of line integrity.

Allows for secondary containment unit to be added when necessary.

End Connections

Clamp ends are readily available.

Polish

Ball and ends are polished to a minimum 20Ra.

Lockable Handle

All Sharpe[®] Series 75 valves are supplied with lockable lever or pipe handles.

Traceability

Body and end piece castings are marked with heat codes providing traceability to the chemical analysis and material test reports performed at the foundry. CMTR's (Certified Material Test Reports) are available upon request.

Note:

*Mounting bracket must be used for high temperature (>180°F) and steam applications.

Series 75 High Purity Tube Full Port 3 & 4-Way Ball Valve

Dimensions (Inches)

Size	L	L1	L2	L3	Н	H1	H2	ØA	Ød	ØD	С	W	ISO	R
1/2	4.65	3.58	2.66	0.92	3.07	1.75	0.93	0.37	0.37	1.00	0.35	4.76	F03 / F04	M12*1.75 - 9
3/4	5.00	3.88	2.87	1.00	3.23	1.89	1.02	0.62	0.62	1.00	0.35	4.76	F03 / F04	M12*1.75 - 9
1	6.00	4.62	3.33	1.30	3.54	2.32	1.20	0.87	0.87	0.80	0.43	5.39	F04 / F05	M14*P2 - 11
1-1/2	6.89	5.48	4.21	1.27	4.09	2.83	1.57	1.38	1.38	1.98	0.55	7.17	F05 / F07	M18*P2.5 - 14
2	7.93	6.55	5.18	1.37	4.51	3.23	1.97	1.87	1.87	2.52	0.55	7.17	F05 / F07	M18*P2.5 - 14
3	10.26	8.03	6.18	1.85	5.28	4.94	2.91	2.87	2.87	3.58	0.91	15.75	F10 / F12	1-1/8*12UNF

Parts & Materials

No.	Part Name	Qty.	Material
1	Body	1	316 Stainless Steel, ASTM 351 CF8M
2	Stem	1	316 Stainless Steel
3	Thrust Washer	1	PTFE
4	O-Ring	1	Viton®
5	Ball	1	316 Stainless Steel, ASTM 351 CF8M
6	Seat 1	1/2	TFM [®] , TFM [®] Cavity Fill
7	Seat 2	1/2	TFM [®] , TFM [®] Cavity Fill
8	Seat Cap	0/1	TFM [®] , TFM [®] Cavity Fill
9	Gasket	2	PTFE
10	End Cap	0/1	316 Stainless Steel, ASTM 351 CF8M
11	Сар	3/4	316 Stainless Steel, ASTM 351 CF8M
12	Spring Washer	16	300 Series Stainless Steel
13	Bolt	16	300 Series Stainless Steel
14	Stem Packing	1	PTFE
15	Ring	1	300 Series Stainless Steel
16	Bellville Washer	2	300 Series Stainless Steel
17	Stem Nut	1	300 Series Stainless Steel
18	Handle	1	300 Series Stainless Steel
18A	Handle Head	1	300 Series Stainless Steel
19	Handle Nut	1	300 Series Stainless Steel
20	Stop Pin	1	300 Series Stainless Steel
21	Handle Cover	1	Plastic
22	Lock Washer	1	300 Series Stainless Steel
23	Handle Bolt	1	300 Series Stainless Steel

Note:

Shown in cavity fill configuration.

Building connections that last^{**}

Technical Information

Size	Torque	Size	Port Diameter (in.)
	in/lbs	1/2	0.37
1/2	63	3/4	0.62
3/4	68	1	0.87
1	88	1-1/2	1.37
1-1/2	232	2	1.87
2	544	3	2.87
3	1278		

Note: *Not to be used as an isolation valve.

Building connections that last

Series 75 High Purity Tube Full Port 3 & 4-Way Ball Valve

How to order Sharpe[®] Series 75

Series	Body	Ball & Stem	Seat	Seal	End Connection	Flow	Plan		Options
75	6 316 Stainless	6 316 Stainless	M TFM®	T PTFE	316	1	7	EP	Electro Polish*
	Steel	Steel			8CE Steel Clamp	2	8		
			C Cavity		Ends	3	9	3	15RA Polish*
			Fill			4	10	SF	Silicone Free* (as per mfg's
						5	12		standard)
						6	13		
	Series 75	SeriesBody756316 Stainless Steel	SeriesBodyBall & Stem756316 Stainless Steel6316 Stainless Steel	SeriesBodyBall & StemSeat756316 Stainless Steel6316 Stainless SteelMTFM® Seat**TFM® CC Cavity Fill	SeriesBodyBall & StemSeatSeal756316 Stainless Steel6316 Stainless SteelMTFM® Seat**TPTFECTFM® Cavity FillCTFM® FillTTFM® FillT	SeriesBodyBall & StemSeatSealEnd Connection756316 Stainless Steel6316 Stainless SteelMTFM® Seat**TPTFE316 Stainless Steel Clamp Ends756316 Stainless SteelMTFM® Seat**TPTFE316 Stainless Steel Clamp Ends	Series Body Ball & Stem Seat Seal End Connection Flow 75 6 316 Stainless Steel 6 316 Stainless Steel M TFM® Seat** T PTFE 316 8CE 316 Stainless Steel Clamp Ends 1 75 6 316 Stainless Steel 7 TFM® C T T PTFE 316 8CE 316 Stainless Steel Clamp Ends 1 4 5 6 7 6 7 6 6	Series Body Ball & Stem Seat Seal End Connection Flow Plan 75 6 316 Stainless Steel 6 316 Stainless Steel M TFM® Seat** T PTFE 316 8CE 316 Stainless Steel Clamp Ends 1 7 2 8 3 9 4 10 5 12 6 13	Series Body Ball & Stem Seat End Connection Flow Plan 75 6 316 Stainless Steel 6 316 Stainless Steel M TFM® Seat** T PTFE 316 8CE 316 Stainless Steel Clamp Ends 1 7 EP 2 8 3 9 3 3 9 4 10 SF 5 12 6 13

Note:

*POA **TFM ia a registered trademark of Dyneon, LLC

Due to continuous development of our product range, we reserve the right to change the dimensions and information for this product as required.

Building connections that last*

Sharpe[®] Series 76

High Performance Three–Way Ball Valve

Design & Features

Body Material

316 Stainless Steel.

Four Seat Design

Three way Series 76 valves utilize four seats to securely support the ball.

Flow Plans

A variety of flow plans are available in both "T" and "L" port configurations.

Stem Design

Live-loaded, bottom entry, blowout proof, anti-static stem featuring packing that extends valve cycle life over conventional ball valves an dis best choice for actuation

Stem seals are live-loaded using Belleville springs to provide consistent sealing forces, reducing or eliminating the need for frequent seal adjustment.

ISO 5211 Integral Mounting Pad

Direct mount pad eliminates need for brackets and couplers*.

Ideal for actuation.

Actuators may be retrofitted on existing Sharpe[®] Series 76 without disruption of line integrity.

Allows for secondary containment unit to be added when necessary.

End Connections

Threaded and Socket Weld end connections are available.

Lockable Handle

All Sharpe[®] Series 76 valves are supplied with lockable lever handles.

Traceability

Body and end piece castings are marked with heat codes providing traceability to the chemical analysis and material test reports performed at the foundry. CMTR's (Certified Material Test Reports) are available upon request.

Note:

*Mounting bracket must be used for high temperature (>180°F) and steam applications.

Parts & Materials

No.	Part Name	Qty.	Material
1	Body	1	316 Stainless Steel ASTM A351 CF8M
2	Ends	3	316 Stainless Steel ASTM A351 CF8M
3	Ball	1	316 Stainless Steel
4	Seat	4	TFM®
5	Stem	1	316 Stainless Steel
6	Thrust Washer	1	PTFE
7	End Seals	3	PTFE
8	Stem Packing	2	PTFE
9	Thrust Washer	1	TFM®
10	Gland	1	300 Series Stainless Steel

No.	Part Name	Qty.	Material
11	Belleville Washer	2	300 Series Stainless Steel
12	Lock Tab	1	300 Series Stainless Steel
13	Handle Nut	2	300 Series Stainless Steel
14	Washer	1	300 Series Stainless Steel
15	Handle	1	300 Series Stainless Steel
16	Handle Sleeve	1	Vinyl Grip
17	Stopper	1	300 Series Stainless Steel
18	Stopper Sleeve	1	300 Series Stainless Steel
19	Stopper Nut	1	300 Series Stainless Steel
20	Locking Device	1	300 Series Stainless Steel

Building connections that last "

Dimensions (Inches)

Size	А	В	С	D	E	F	G	I	Н	J	К	L
1⁄4	0.43	2.98	2.56	0.35	5.20	1.51	1.45	0.24	0.24	0.32	F04	F03
3/8	0.43	2.98	2.56	0.35	5.20	1.51	1.45	0.24	0.24	0.32	F04	F03
1/2	0.49	2.98	2.56	0.35	5.20	1.51	1.45	0.24	0.24	0.32	F04	F03
3/4	0.63	3.41	2.82	0.35	5.20	1.76	1.74	0.24	0.24	0.35	F04	F03
1	0.79	4.06	3.71	0.43	7.09	2.00	2.17	0.24	0.28	0.45	F05	F04
1-1/4	0.98	4.65	3.94	0.43	7.09	2.27	2.39	0.24	0.28	0.45	F05	F04
1-1/2	1.26	4.95	4.56	0.55	8.86	2.46	2.96	0.28	0.35	0.59	F07	F05
2	1.50	5.87	4.92	0.55	8.86	2.93	3.32	0.28	0.35	0.59	F07	F05

Technical Information

0.	CV	CV	Torque	Weight		
Size	T Port	L Port	PTFE "T" Seat	TFM [®] "M" Seat	Lbs	
1/4	1/4 5		35	40	1.65	
3/8	6	3	35	40	1.65	
1/2	8	4	35	40	1.65	
3/4	13	7	70	73	2.65	
1	22	12	82	100	3.97	
1-1/4	35	20	182	183	5.51	
1-1/2	59	34	235	241	7.94	
2	88	51	495	501	12.79	

Building connections that last "

Note: *Not to be used as an isolation valve.

How to order Sharpe[®] Series 76

Note:

TFM ia a registered trademark of Dyneon, LLC

Due to continuous development of our product range, we reserve the right to change the dimensions and information for this product as required.

Building connections that last "

Building connections that last*

Sharpe[®] Series 77

3 & 4–Way High Performance Ball Valve

Design & Features

3 and 4-Way High Performance Ball Valve

Body Material

316 Stainless Steel & Carbon Steel.

Full Port Design

All sizes from $1\!\!/_2$ through 4" are full port designs at all connections.

Bodies rated to 600 CWP.

3-Piece Design

In-line serviceable swing-out center section allows easy access to internal valve components without disturbing alignment of pipe.

Stem Design

Live-loaded, bottom entry, blowout proof, anti-static stem featuring packing that extends valve cycle life over conventional ball valves an dis best choice for actuation

Stem seals are live-loaded using Belleville springs to provide consistent sealing forces, reducing or eliminating the need for frequent seal adjustment.

ISO 5211 Integral Mounting Pad

Ideal for actuation.

Centering lip feature assures precise alignment of bracket, stem and coupler.

Actuators may be retrofitted on existing Sharpe[®] Series 77 without disruption of line integrity.

Allows for secondary containment unit to be added when necessary.

Multi-Port Configurations

The Sharpe[®] Series 77 Valves are ideal choices for many piping designs involving diverting or mixing.

In certain applications a single Series 77 valve can replace two, three or four two-way valves, reducing cost and saving space.

Four-Seat Design

Three-way and 4-Way Series 77 valves utilize four seats to securely support the ball.

Trunnion Support Ball

Sizes 2" and larger valves incorporate a trunnion supported ball for positive centering and reduced seat wear.

End Connections

Series 77 valves are available in many end connections, including threaded, socket weld and 150# flanged.

Lockable Handle

All Sharpe Series 77 valves are supplied with lockable lever or pipe handles.

Traceability

Body and end piece castings are marked with heat codes providing traceability to the chemical analysis and material test reports performed at the foundry. CMTR's (Certified Material Test Reports) are available upon request.

Note:

*Mounting bracket must be used for high temperature (>180°F) and steam applications.

Building connections that last

Series 77 3 and 4–Way High Performance Ball Valve

Sizes (1/2" — 11/2")

No.	Part Name	Qty.	Material
1	Body	1	316 Stainless Steel ASTM A351 CF8M Carbon Steel ASTM A216 WCB**
2	Ends	3 or 4	316 Stainless Steel ASTM A351 CF8M Carbon Steel ASTM A216 WCB**
3	Ball 1		316 Stainless Steel
4	Seat	4	TFM [™] 1600/TFM [™] Cavity Filler
5	Stem	1	316 Stainless Steel
6	Lower Thrust Washer	1	TFM™ 1600
7	Body Seal	4	PTFE
8	Chevron Steam Packing	1 set	PTFE
9	Thrust Washer	1	TFM™ 1600
10	Gland	1	300 Series Stainless Steel
11	Belleville Washer	4	SUS304-CSP
12	Socket Set Screws	1	300 Series Stainless Steel
13	Stem Nut	1	300 Series Stainless Steel

No.	Part Name	Qty.	Material
14	Washer	1	300 Series Stainless Steel
15	Handle	1	300 Series Stainless Steel
16	Handle Sleeve	1	Vinyl
17	Stop Bolt	1	300 Series Stainless Steel
18	Stop Nut	1	A2-70
19	Bolts	16	300 Series Stainless Steel
20	Bolt Washer	16	300 Series Stainless Steel
21	Stop Plate	1	300 Series Stainless Steel
22	Handle Adapter	1	300 Series Stainless Steel
23	Bolt	1	300 Series Stainless Steel
24	Nut	1	300 Series Stainless Steel
25	Body Flange	1/0*	316 Stainless Steel ASTM A351 CF8M Carbon Steel ASTM A216 WCB**
26	Nut	1	300 Series Stainless Steel

Note:

*1 for three-way, 0 for 4-Way. **POA.

Series 77 3 and 4–Way High Performance Ball Valve

Parts & Materials

Sizes (2" - 4")

No.	Part Name	Qty.	Material
1	Body	1	316 Stainless Steel ASTM A351 CF8M Carbon Steel ASTM A216 WCB**
2	Ends 3 or		316 Stainless Steel ASTM A351 CF8M Carbon Steel ASTM A216 WCB**
3	Ball	1	316 Stainless Steel ASTM A351 CF8M
4	Seat	4	TFM [™] 1600/ TFM [™] Cavity Filler
5	Stem	1	316 Stainless Steel
6	Lower Thrust Washer	2	TFM™ 1600
7	Body Seal	4	PTFE
8	Chevron Stem Packing	1 set	PTFE
9	Thrust Washer	1	TFM™ 1600
10	Gland	1	300 Series Stainless Steel
11	Belleville Washer	4	SUS304-CSP
12	Socket Set Screws	1	300 Series Stainless Steel
13	Stem Nut	1	300 Series Stainless Steel
14	Washer	1	300 Series Stainless Steel
15	Handle	1	300 Series Stainless Steel

No.	Part Name	Qty.	Material
16	Handle Sleeve	1	Vinyl
17	Stop Bolt	1	300 Series Stainless Steel
18	Stop Nut	1	A2-70
19	Stud	20	300 Series Stainless Steel
20	Stud Washer	20	300 Series Stainless Steel
21	Stop Plate	1	300 Series Stainless Steel
22	Handle Adapter	1	300 Series Stainless Steel
23	Bolt	1	300 Series Stainless Steel
24	Nut	1	300 Series Stainless Steel
25	Body Flange	1/0*	316 Stainless Steel ASTM A351 CF8M Carbon Steel ASTM A216 WCB**
26	Stud Nut	20	300 Series Stainless Steel
27	Body Cover	1	316 Stainless Steel ASTM A351 CF8M Carbon Steel ASTM A216 WCB**
28	Cover Seal	1	PTFE
29	Bushing	1	TFM™ 1600

Building connections that last "

Threaded (NPT)

Socket Weld

Dimensions (1/2" – 11/2")

Size	A	B1	B2	С	Ød	D	E	ØF	Н	J	K	L	М	ØO	ØP	Q	S	ØT	ØZ
1/2	0.35	5.84	4.20	1.74	0.610	0.354	5.30	1.65 (F04)	3.19	0.394	0.858	7⁄16 - 20 UNF	0.236	3.50	1.38	0.06	0.44	2.38	0.63
3/4	0.43	6.06	4.35	2.19	0.787	0.433	6.99	1.97 (F05)	3.72	0.512	1.079	‰-18 UNF	0.276	3.86	1.69	0.06	0.44	2.75	0.63
1	0.43	6.63	4.98	2.37	0.984	0.433	6.99	1.97 (F05)	3.90	0.512	1.343	‰-18 UNF	0.276	4.25	2.00	0.06	0.44	3.13	0.63
1-1/2	0.59	8.36	6.05	3.32	1.496	0.551	9.90	2.75 (F07)	5.16	0.512	1.929	M18x2.5	0.354	5.00	2.88	0.06	0.56	3.88	0.63

Note: The dimensions above are for information only. Please refer to Sharpe® Valves if you need dimensions for construction.

Dimensions 2"- 4"

Size	А	B1	B2	С	Ød	D	E	ØF	Н	J	К	L	М	ØO	ØP	Q	S	ØТ	ØZ
2	0.60	8.66	6.73	3.59	2.008	0.551	9.90	2.75 (F07)	5.43	0.630	2.402	M18x2.5	0.354	6.00	3.62	0.06	0.63	4.75	0.75
21/2	1.05	11.22	9.42	4.97	2.559	0.669	19.55	4.02 (F10)	7.38	0.630	3.031	‰-14 UNF	0.472	7.00	4.13	0.06	0.69	5.50	0.75
3	1.05	11.22	9.42	4.97	2.992	0.669	19.55	4.02 (F10)	7.38	0.630	3.551	‰-14 UNF	0.472	7.52	5.00	0.06	0.75	6.00	0.75
4	1.20	13.66	11.38	5.95	3.937	0.866	23.48	4.02 (F10)	8.39	1.181	4.543	1%-12 UNF	0.472	9.02	6.18	0.06	0.94	7.50	0.75

Note: The dimensions above are for information only. Please refer to Sharpe® Valves if you need dimensions for construction.

Building connections that last "

C _V Data To			Torque (at	600 CWP)	Approx. Weight (Lbs.)								
Valve Size	T Port	L Port	Valve Size	IN-LB	Valve Size	Body	Threaded, Socket Weld, Butt Weld	Flang CL150	ed End CL300	Clamp End	Blind End		
1/2	13	8	1/2	113	1/2"	2.00	0.60	1.60	2.00	0.80	0.50		
3/4	22	13	3/4	165	3/4"	2.50	0.80	2.00	3.20	0.95	0.50		
1	35	21	1	312	1"	3.10	1.30	2.70	4.25	1.60	0.95		
1-1/2	85	49	1-1/2	538	1-1/2"	5.50	1.80	5.00	8.22	2.20	1.65		
2	160	93	2	755	2"	5.50	2.70	6.00	8.20	2.90	1.90		
2-1/2	267	154	2-1/2	1475	2-1/2"	8.20	-	10.00	12.90	3.90	3.00		
3	365	211	3	1475	3"	11.50	-	11.00	16.60	4.20	3.20		
4	649	375	4	1736	4"	21.50	-	21.90	30.00	9.70	8.30		

Note:

*Series 77 Valves are not to be used as an isolation valve.

Building connections that last*

How to order Sharpe[®] Series 77

Example:

A 3" flanged (code D) 3-way ball valve design (flow plan 9), with cast ASTM A351 CF8M body & end connections, stainless ball & stem, TFM seats, and PTFE seals, is: **377–66MT6D9**.

3	77	-	6	6		М	т		6		D	9)		
Size	Series		Body Material	Ball & Stem Material	Ν	Seat Material	Seal Material	Er	End Material		End Connection		Flow Plan		
1/2	77		Stainless Steel	316	м	TFM™	T PTFE		Stainless		ASME Class	1	8		
3/4		- 6	6 (cast ASTM A351 CF8M) Carbon Steel	6 Stainless Steel		Seat	-	6	(cast	D	Flange	2	9		
1				Carbon Steel	Carbon Steel	Carbon Steel		C	TFM™ Cavitv			ASTM A351		Threaded	3
1-1/2		4	(cast A216 WCB)**			Fill	_		CF8M)	A	Ends (2-½" - 4")**	4	11		
2		I		I					Carbon Steel		Socket Weld	5	12		
2-1/2								4	(cast	В	(2- 1/2" - 4")**	6	13		
3									WCB)**	С	Butt-weld Sch 10 40	7	14		
4											& 80**				

Note:

**POA.

3M[™] Dyneon[™] TFM[™] are trademarks owned by 3M.

Responsibility for proper selection, use and maintenance of any product remains solely with the purchaser and end user. We reserve the right to modify or improve the designs or specifications of any product at any time without notice.

Building connections that last*

Sharpe[®] Series D84 3-Piece Diverter Ball Valve

Design & Features

Diverter Ball Valve

Body Material

316 Stainless Steel & Carbon Steel.

3-Piece Diverter Design

In-line serviceable swing-out center section allows easy access to internal valve components without disturbing alignment of pipe.

Stem Design

Live-loaded, bottom entry, blowout proof, anti-static stem featuring packing that extends valve cycle life over conventional ball valves an dis best choice for actuation

Stem seals are live-loaded using Belleville springs to provide consistent sealing forces, reducing or eliminating the need for frequent seal adjustment.

Tongue and Groove Design

Fully encapsulated body seals, allowing ends to be welded in-line, without time consuming and labor intensive disassembly.

Design compensates for bolt expansion and reduces the chance of external leakage.

Helps prevent seal ruptures in high pressure, cryogenic or steam applications.

Encapsulated Body Bolts

Heavy duty stainless steel bolting is protected from outside environment assuring valve integrity.

Ideal for wash-downs.

ISO 5211 Integral Mounting Pad

Ideal for actuation.

Centering lip feature assures precise alignment of bracket, stem and coupler.

Actuators may be retrofitted on existing Sharpe® Series D84 without disruption of line integrity.

Allows for secondary containment unit to be added when necessary.

Lockable Handle

All Sharpe[®] Series D84 valves are supplied with lever or pipe handles and are designed to permit locking the valve in either the open or closed position.

Traceability

Body and end piece castings are marked with heat codes providing traceability to the chemical analysis and material test reports performed at the foundry. CMTR's (Certified Material Test Reports) are available upon request.

Parts & Materials

Sizes (1/2"- 2 1/2")

No.	Part Name	Qty.	Material
1	Body	1	316 Stainless Steel ASTM A351 CF8M
2	Pipe Ends	3	316 Stainless Steel ASTM A351 CF8M 316L Stainless Steel ASTM A351 CF3M Carbon Steel, ASTM A216 WCB
3	Ball	1	316 Stainless Steel
4	Stem	1	316 Stainless Steel, 17-4 PH SS
5	Valve Seat	2	PTFE, TFM [®] , UHMWPE RTFE, Nova, PEEK, Delrin [®]
6	Body Seal	3	PTFE, TFM [®] , Grafoil, Buna, Neoprene, UHMWPE, EPR, Viton [®]
7	Thrust Bearing	1	Nova (UHMWPE with UHMWPE Seats)
8	Thrust Bearing	1	PEEK (UHMWPE with UHMWPE Seats)
9	Stem Packing	2	Nova (UHMWPE with UHMWPE Seats)
10	Seat Protector	1	PEEK
11	Gland	1	300 Series Stainless Steel

No.	Part Name	Qty.	Material
12	Belleville Washer	2 Sets	300 Series Stainless Steel
13	Packing Nut	1	300 Series Stainless Steel
14	Lock Tab	1	300 Series Stainless Steel
15	Lower Lock Latch	1	300 Series Stainless Steel
15B	Upper Lock Latch	1	300 Series Stainless Steel
15C	Latch Bolt	2	300 Series Stainless Steel
16	Handle (¼"- 2")	1	300 Series Stainless Steel
17	Lock Washer	1	300 Series Stainless Steel
18	Handle Nut (¼"- 2")	1	300 Series Stainless Steel
19	Body Bolts	4	300 Series Stainless Steel
19A	Body Connector Bolt	4	300 Series Stainless Steel
20	Nuts	8	300 Series Stainless Steel
21	Stop Pin (¼"- ½")	1 2	300 Series Stainless Steel 300 Series Stainless Steel

Building connections that last "

Sizes (Sizes 3" – 4")

No.	Part Name	Qty.	Material
1	Body	1	316 Stainless Steel: ASTM A351 CF8M
2	Pipe Ends	3	316 Stainless Steel: ASTM A351 CF8M 316L Stainless Steel: ASTM A351 CF3M Carbon Steel: ASTM A216 WCB
3	Ball	1	316 Stainless Steel
4	Stem	1	316 Stainless Steel, 17-4 PH SS
5	Valve Seat	2	PTFE, TFM [®] ,RTFE, UHMWPE Nova, PEEK, Delrin [®]
6	Body Seal	3	TFE, TFM [®] , Grafoil, Buna, Neoprene UHMWPE, EPR, Viton [®]
7	Thrust Bearing	1	Nova (UHMWPE with UHMWPE Seats)
8	Stem Seal	1	Nova (UHMWPE with UHMWPE Seats)
9	Gland	1	300 Series Stainless Steel

No.	Part Name	Qty.	Material
10	Belleville Washer	1	300 Series Stainless Steel
11	Washer	4	300 Series Stainless Steel
12	Stem Nut	1	300 Series Stainless Steel
13	Lock Tab	1	300 Series Stainless Steel
14	Handle	1	Galvanized Steel
15	Wrench Block	1	300 Series Stainless Steel
16	Hex Head Bolt	1	300 Series Stainless Steel
17	Body Bolt	24	300 Series Stainless Steel
18	Nuts	8	300 Series Stainless Steel
19	Stop Pin	1	300 Series Stainless Steel
20	Stopper	1	300 Series Stainless Steel
21	Seat Retainer	1	300 Series Stainless Steel, Carbon Steel

Dimensions (Inches)

Size	А	В	С	D	F	G	L	М	Ν	Q	R	Т	v
1/2	2.59	2.72	0.98	1.06	1.81	1.66	³ ⁄ ₈ -24	0.220	2.14	1.42 (F03)	4.50	M5x.8	0.26
3⁄4	2.87	2.87	0.98	1.17	1.95	1.65	³ ⁄ ₈₋₂₄	0.220	2.24	1.42 (F03)	4.50	M5x.8	0.35
1	2.71	3.49	1.18	1.51	2.38	2.23	⁷ / ₁₆ -20	0.300	2.69	1.65 (F04)	5.75	M5x.8	0.47
1-1/2	4.57	4.15	1.38	1.73	3.06	2.90	⁹ ⁄16-18	0.350	3.16	1.97 (F05)	6.78	M6x1.0	0.69
2	5.00	4.62	1.38	1.90	3.59	3.09	⁹ ⁄16 - 1 8	0.350	3.35	1.97 (F05)	6.78	M6x1.0	0.67
2-1/2	5.86	5.86	2.16	2.93	4.68	4.56	M20x2.5	0.551	5.48	2.75 (F07)	8.73	M8x1.25	1.14
3	6.66	7.25	-	3.89	6.46	5.76	1-14	0.748	6.82	4.01 (FIO)	13.74	M10x1.5	0.69
4	8.42	8.98	-	4.45	8.11	6.37	1-14	0.748	7.43	4.01 (FIO)	13.74	M10x1.5	0.69

Note: The dimensions above are for information only. Please refer to Sharpe® Valves if you need dimensions for construction.

Building connections that last*

Сv 3.2

5

10

24

36

60

130

240

Standard Port

Class 600 $\frac{1}{2}$ " - 2 $\frac{1}{2}$ " Class 300 3" - 4"

Note: **Not to be used as an isolation valve.

How to order Sharpe[®] Series D84

Example:

3⁄4	D84	-	6		6	R	М	т	Έ	TE	P1			
Size	e Series Body & End Material			Ball & Stem Material	Seat Material	Seal Er Material Conne (Sic		nd ection des)	End Connection (Bottom)	Flow Plan				
Size		Serie	s	Seat Material			End Connection (Side)			Flow Plan				
1/2		D84		Т	PTFE	TE	TE Threaded			P1 90° Rotation flow from center				
3⁄4				R	RTFE	SW	Socket Weld			to left or right				
1	Boo	dy & End	Material	М	TFM®	BW5	Schedule 5 Butt-we	eld*	P2	180° Rotation flow from to left or right or shut-off	center position			
1-1⁄2	4 Car	bon Stee	l (ends only)	D	Delrin ^{®**}	BW10	Schedule 10 Butt-w	/eld*						
2	6 316	Stainles	s Steel	N	Nova	BW40	Schedule 40 Butt-w	veld						
2-1/2	Ball	l & Stem	Material	Р	Peek**	BW80	Schedule 80 Butt-w	/eld*						
3	6 316	Stainles	s Steel	U	UHMWPE			``						
4	17-4	4 PH SS	Stem,			_	End Connection (Bottom)							
	/ 316	7 316 SS Ball			Seal Material	TE	TE Threaded							
				T PTFE		SW	Socket Weld							
				М	TFM [®]	BW5	Schedule 5 Butt-we	eld*						
				G	Grafoil	BW10	Schedule 10 Butt-w	/eld*						
				В	Buna	BW40	Schedule 40 Butt-w	veld						
				N	Neoprene	BW80	Schedule 80 Butt-w	/eld*						
				V	Viton [®]									
				U	UHMWPE									
				E	Ethylene Propylene Rubber (EPR)									

Notes:

*POA.

**Requires 17-4 PH SS stem.

Viton[®] is a resisted trademark of E.I. DuPont.

Delrin[®] is a resisted trademark of E.I. DuPont.

TFM® is a registered trademark of Dyleon, LLC.

Responsibility for proper selection, use and maintenance of any product remains solely with the purchaser and end user. We reserve the right to modify or improve the designs or specifications of any product at any time without notice.

Building connections that last*
Building connections that last

Sharpe[®] Series D54

Flanged Standard Port Diverter Ball Valve Class 150

Design & Features

Flanged Standard Port Diverter Ball Valve Class 150

Body Material

316 Stainless Steel.

Stem Design

Live-loaded, bottom entry, blowout proof, anti-static stem featuring packing that extends valve cycle life over conventional ball valves an dis best choice for actuation

Stem seals are live-loaded using Belleville springs to provide consistent sealing forces, reducing or eliminating the need for frequent seal adjustment.

ISO 5211 Integral Mounting Pad

Ideal for actuation.

Centering lip feature assures precise alignment of bracket, stem and coupler.

Actuators may be retrofitted on existing Sharpe® Series D54 without disruption of line integrity.

Allows for secondary containment unit to be added when necessary.

Lockable Handle

All Sharpe[®] Series D54 valves are supplied with lockable lever or pipe handles.

Parts & Materials

Sizes (1" — 2½")

No.	Part Name	Qty.	Material
1	Body	1	316 Stainless Steel ASTM A351 CF8M
2	End Piece	1	316 Stainless Steel ASTM A351 CF8M
3	Ball	1	316 Stainless Steel
4	Seat	2	TFM™, PTFE, Nova
5	Body Seal	1	PTFE or Graphite
6	Stem	1	316 Stainless Steel
7	Thrust Bearing	1	RTFE
8	Stem Packing	2/3	RTFE
9	Gland	1	300 Series Stainless Steel
10	Belleville Washer	4	300 Series Stainless Steel

Parts & Materials 13/ 13 (11/ 11 10 **Series D54** 3"-4" (12 0 0 0 0 0 0 \bigcirc \bigcirc \cap \bigcirc 2

Sizes (3" − 4")

No.	Part Name	Qty.	Material
1	Body	1	316 Stainless Steel ASTM A351 CF8M
2	End Piece	1	316 Stainless Steel ASTM A351 CF8M
3	Ball	1	316 Stainless Steel
4	Seat	2	TFM [™] , PTFE, RTFE or Nova
5	Body Seal	1	PTFE or Graphite
6	Thrust Bearing	1	RTFE
7	Stem	1	316 Stainless Steel
8	Stem Packing	1/2/3	RTFE or Graphite
9	Gland	1	300 Series Stainless Steel

No.	Part Name	Qty.	Material
10	Belleville Washer (1" to 4")	4	300 Series Stainless Steel
11	Packing Nut (1" to 4")	1	300 Series Stainless Steel
11A	Lock Tab (1" to 4")	1	300 Series Stainless Steel
12	Stopper	1	300 Series Stainless Steel
13	Handle	1	Galvanized Steel
13A	Wrench Block	1	300 Series Stainless Steel
13B	Hex Head Bolt	1	300 Series Stainless Steel
16	Stop Pin	1	300 Series Stainless Steel
17	Stem Locking Ring	1	300 Series Stainless Steel

Dimensions (Inches)

Size	А	В	С	D	E	F	G	Н
1	5.00	4.75	3.60	2.50	3.12	4.25	3.13	4
1-1/2	6.50	9.00	4.00	3.64	3.88	5.00	4.00	4
2	7.00	9.00	4.50	4.41	4.75	6.00	5.00	4
2-1/2	7.50	9.00	5.50	3.94	5.50	7.00	5.50	4
3	8.00	13.74	6.57	4.00	6.00	7.50	6.00	4
4	9.00	13.74	6.95	4.49	7.50	9.00	7.15	8

Size	Port 1 Port 2	Port 3	Approx. Weight (lbs.)	Cv
1	0.79	0.62	8.5	15
1-1/2	1.20	1.05	13.9	36
2	1.50	1.38	22.4	54
2-1/2	2.00	1.61	40.8	90
3	2.50	2.07	46.8	195
4	3.00	2.47	67.3	360

Note:

The dimensions above are for information only. Please refer to Sharpe® Valves if you need dimensions for construction.

Dimensions (Inches)

Size	К	L	М	Р	R	S	Т	U
1	2.22	.224	M6 x 1.0	0.35	1.67 (F05)	0.75	1.69	0.375
1-1/2	3.24	.343	M8 x 1.25	0.71	2.75 (F07)	1.23	2.75	0.563
2	3.48	.343	M8 x 1.25	0.56	2.75 (F07)	1.10	2.75	0.563
2-1/2	3.74	.343	M8 x 1.25	0.58	2.75 (F07)	1.10	2.75	0.563
3	5.71	.748	M10 x 1.5	0.69	4.02 (F10)	1.87	3.54	0.748
4	6.15	.748	M10 x 1.5	0.69	4.02 (F10)	1.87	3.54	0.748

Note:

The dimensions above are for information only. Please refer to Sharpe® Valves if you need dimensions for construction.

Technical Data

Applicable Standards

Wall Thickness	ASME B16.34
Face to Face Dimensions	ASME B16.10
Flange Dimensions	ASME B16.5
Pressure Test	API 598

Note: 3M[™] Dyneon[™] TFM[™] are trademarks owned by 3M.

How to order Sharpe[®] Series D54

Size	Series	Class	Alloy		Seat		Seal		Flow Plan	
1	D54	11 150	6 Stainless Steel	Т	PTFE	Т	PTFE	P1	90° Rotation. Flow from center to left	
1-1/2	The series D54 is a diverter valve and should not be used as an			Μ	TFM™	G Graphite		or right		
2	isolation valve.				Nova					
2-1/2										
3										
4										

Note:

M™Dyneon™ TFM™ are trademarks owned by 3M. Responsibility for proper selection, use and maintenance of any product remains solely with the purchaser and end user. We reserve the right to modify or improve the designs or specifications of any product at any time without notice.

Building connections that last

Sharpe[®] Series D88

High Purity Tube Diverter Ball Valve

Design & Features

High Purity Tube Diverter Ball Valve

Body Material

316L Stainless Steel.

Three Piece Diverter Design

In-line serviceable swing-out center section allows easy access to internal valve components without disturbing alignment of pipe.

Stem Design

Live-loaded, bottom entry, blowout proof, anti-static stem featuring packing that extends valve cycle life over conventional ball valves and is best choice for actuation.

Stem seals are live-loaded using Belleville springs to provide consistent sealing forces, reducing or eliminating the need for frequent seal adjustment.

Tongue and Groove Design

Fully encapsulated body seals, allowing ends to be welded in-line, without time consuming and labor intensive disassembly.

Design compensates for bolt expansion and reduces the chance of external leakage.

Helps prevent seal ruptures in high pressure, cryogenic or steam applications.

Encapsulated Body Bolts

Heavy duty stainless steel bolting is protected from outside environment assuring valve integrity.

Ideal for wash-downs.

ISO 5211 Integral Mounting Pad

Ideal for actuation.

Centering lip feature assures precise alignment of bracket, stem and coupler.

Actuators may be retrofitted on existing Sharpe® Series D88 without disruption of line integrity.

Allows for secondary containment unit to be added when necessary.

Lockable Handle

All Sharpe[®] Series D88 valves are supplied with lockable lever or pipe handles.

Traceability

Body and end piece castings are marked with heat codes providing traceability to the chemical analysis and material test reports performed at the foundry. CMTR's (Certified Material Test Reports) are available upon request.

Sizes (1/2"- 2")

No.	Part Name	Qty.	Materials
1	Body	1	316L Stainless Steel ASTM A351 CF3M
2	Pipe Ends	2	316L Stainless Steel ASTM A351 CF3M
3	Ball	1	316L Stainless Steel
4	Stem	1	316L Stainless Steel
5	Seat	2	TFM®, PTFE/RTFE/Cavity Filler PTFE
6	Body Seal	2/3	PTFE, TFM [®]
7	Thrust Bearing	1	TFM®
8	Thrust Bearing	1	TFM®
9	Stem Packing	3	TFM®
10	Seal Protector	1	TFM®
11	Gland	1	300 Series Stainless Steel
12	Belleville Washer	4	300 Series Stainless Steel

No.	Part Name	Qty.	Materials
13	Packing Nut	1	300 Series Stainless Steel
14	Lock Tab	1	300 Series Stainless Steel
15	Lower Lock Latch	1	300 Series Stainless Steel
15B	Upper Lock Latch	1	300 Series Stainless Steel
15C	Latch Bolt	2	300 Series Stainless Steel
16	Handle	1	300 Series Stainless Steel
17	Lock Washer	1	300 Series Stainless Steel
18	Handle Nut (¼"-2")	1	300 Series Stainless Steel
19	Body Bolts	4/8	300 Series Stainless Steel
20	Nuts	4/8	300 Series Stainless Steel
21	Stop Pin (½")*	1 2	300 Series Stainless Steel

Sizes (21/2")

No.	Part Name	Qty.	Materials	No.	Part Name	Qty.	Materials
1	Body	1	316L Stainless Steel ASTM A351 CF3M	12	Packing Nut	1	300 Series Stainless Steel
2	Pipe Ends	2	316L Stainless Steel ASTM A351 CF3M	13	Lock Tab	1	300 Series Stainless Steel
3	Ball	1	316L Stainless Steel	14	Wrench Block	1	300 Series Stainless Steel
4	Seat	2	TFM [®] , PTFE/RTFE/Cavity Filler PTFE	15	Handle Bolt	1	300 Series Stainless Steel
5	Body Seal	2/3	PTFE, TFM [®]	16	Stop Pin	1	300 Series Stainless Steel
6	Thrust Bearing	2	TFM [®]	17	Body Bolts	4/8	304 Stainless Steel
7	Stem	1	316L Stainless Steel	18	Body Nuts	4/8	300 Series Stainless Steel
8	Stem Seal	3	TFM [®]	19	Handle	1	300 Series Stainless Steel
9	Gland	1	300 Series Stainless Steel	20	Gland Washer	1	300 Series Stainless Steel
10	Stopper	1	300 Series Stainless Steel	21	Screw	2	304 Stainless Steel
11	Belleville Washer	4	300 Series Stainless Steel	22	Lower Stopper	1	316 Stainless Steel

Sizes (3"- 4")

No.	Part Name	Qty.	Material
1	Body	1	316L Stainless Steel ASTM A351 CF3M
2	Pipe Ends	2	316L Stainless Steel ASTM A351 CF3M
3	Ball	1	316L Stainless Steel
4	Stem	1	316L Stainless Steel
5	Seat	2	TFM [®] , PTFE / RTFE / Cavity Filler PTFE
6	Body Seal	2/3	PTFE, TFM®
7	Thrust Bearing	1	TFM®
7a	Stem Location Ring	1	300 Series Stainless Steel
8	Thrust Bearing	1	TFM®
9	Stem Packing	3	TFM®
10	Gland	1	300 Series Stainless Steel

No.	Part Name	Qty.	Material
11	Belleville Washer	4	300 Series Stainless Steel
12	Packing Nut	1	300 Series Stainless Steel
13	Lock Tab	1	300 Series Stainless Steel
14	Handle	1	300 Series Stainless Steel
15	Wrench Block	1	300 Series Stainless Steel
16	Hex Head Bolt	1	300 Series Stainless Steel
17	Body Bolts	16/24	304 Series Stainless Steel
18	Stop Pin	1	300 Series Stainless Steel
19	Seat Retainer	1	300 Series Stainless Steel
20	Stopper	1	300 Series Stainless Steel

Series D88 1/2"-2"

Dimensions (Sizes ½"- 2")

Size	Port	А	A1	A2	В	С	Е	F	G	Н	J	J1	J2	К	K1	K2	М	Ν	Р	R	S	Т	U	۷	W
1/2	0.370	3.50	5.50	2.51	0.97	0.99	1.10	1.75	1.55	-	1.89	4.15	2.65	1.26	2.27	0.77	0.50	2.14	0.220	4.50	0.98	M5 x .8	1.42 (F03)	0.45	³ /8-24
3⁄4	0.618	4.00	6.00	3.03	1.05	0.99	1.16	2.05	1.62	2.18	1.97	4.32	2.84	1.47	2.47	0.99	0.75	2.20	0.220	4.50	0.98	M5 x .8	1.42 (F03)	0.39	³ ⁄8-24
1	0.870	4.50	6.50	3.54	1.54	1.98	1.62	2.42	2.31	3.30	2.15	4.56	3.08	1.47	2.48	1.00	1.00	2.59	0.295	5.75	1.18	M5 x .8	1.65 (F04)	0.65	7/16-20
1-1⁄2	1.366	5.50	7.50	4.51	2.13	1.98	1.90	3.16	3.07	4.08	2.80	5.45	3.95	1.69	2.69	1.19	1.50	3.18	0.343	7.00	1.38	M6 x 1.0	1.97 (F05)	0.63	7/16-20
2	1.870	6.25	8.00	5.29	2.65	2.52	2.23	3.56	3.42	4.08	2.90	5.91	4.54	1.80	2.69	1.32	2.00	3.52	0.343	7.00	1.38	M6 x 1.0	1.97 (F05)	0.67	9/16-20

Note: Due to continuous development of our product range, we reserve the right to change the dimensions and information for this product as required.

Series D88 2¹/₂" – 4"

21⁄2"

Dimensions (Sizes 2¹/₂"- 4")

Size	Port	А	A1	A2	В	С	Е	F	G	J	J1	J2	К	K1	K2	М	Ν	Ρ	R	S	Т	U	۷	W
2-1⁄2	2.370	6.75	10.00	5.77	3.19	3.05	3.25	4.57	4.85	3.45	6.34	4.94	1.77	2.69	1.29	2.50	5.73	0.551	8.74	2.16	M8 x 1.25	2.75 (F07)	0.44	M20 x 2.5
3	2.870	6.75	10.62	5.80	3.96	3.58	4.28	6.44	6.02	5.00	8.30	5.89	1.39	3.33	0.92	3.00	7.04	0.748	13.74	_	M10 x 1.5	4.01 (F10)	0.75	1-14 UNS
4	3.831	8.25	11.39	7.07	4.73	4.68	4.81	8.12	6.61	5.00	9.50	7.34	1.76	3.33	1.17	4.00	7.57	0.748	13.74	-	M10 x 1.5	4.01 (F10)	0.89	1-14 UNS

Note: The dimensions above are for information only. Please refer to Sharpe® Valves if you need dimensions for construction.

Technical Information

Note:

*Ratings are for the valve body, specific ends may cause the ratings to change.

Technical Information

Size	Су
1/2	3.2
3⁄4	5
1	10
1-1/2	24
2	36
2-1/2	60
3	130
4	240

Technical Information

Flow Pattern

Note:

The Series D88 Valves are not to be used as an isolation valve.

How to order Sharpe[®] Series D88

Size
1/2
3⁄4
1
1-1⁄2
2
2-1/2
3
4

	Series
	D88
	Body & Ends
6	316L Stainless Steel
	Ball & Stem
6	316 Stainless Steel

	Seat
R	RTFE
Т	PTFE
М	TFM [®]
С	Cavity Filler - PTFE
	Seal
Т	PTFE

TFM®

М

	Ends (Side)
CE	Clamp
XBTE	Butt-weld Tube Extended
BW	Butt-weld Tube Short
	Flow Plan
P1	See Chart Above
P2	See Chart Above
P3	See Chart Above
P4	See Chart Above
	Flow Plan
1	240 Grit
2	320 Grit*
3	240 Grit EP*
4	320 Grit EP*

optione

PP Purge Port*

·		
.		
	1	

Note: *POA

TFM® is a registered trademark of Dyleon, LLC .

Due to continuous development of our product range, we reserve the right to change the dimensions and information for this product as required.

Building connections that last

Sharpe[®] Flush Bottom Tank

High Performance 3–Piece Ball Valve

Design & Features

Body Material

316 Stainless Steel.

Tank Pads Made From Solid Bar

Machined from 316L Stainless Steel, eliminating porosity.

3-Piece Design

In-line serviceable swing-out center section allows easy access to internal valve components without disturbing alignment of pipe.

Stem Design

Live-loaded, bottom entry, blowout proof, anti-static stem featuring packing that extends valve cycle life over conventional ball valves an dis best choice for actuation

Stem seals are live-loaded using Belleville springs to provide consistent sealing forces, reducing or eliminating the need for frequent seal adjustment.

Tongue and Groove Design

Fully encapsulated body seals, allowing ends to be welded in-line, without time consuming and labor intensive disassembly.

Design compensates for bolt expansion and reduces the chance of external leakage.

Helps prevent seal ruptures in high pressure, cryogenic or steam applications.

Encapsulated Body Bolts

Heavy duty stainless steel bolting is protected from outside environment assuring valve integrity.

Ideal for wash-downs.

Slotted Seat Design

Relief slots help equalize body pressure and assure leak-tight sealing.

Seats also provide a wiping action that cleans ball and seats each time valve is cycled.

Choice of Seats and Seals

A wide variety of seat and seal materials are readily available for the most demanding applications including; TFE, RTFE, TFM[®], Nova, Delrin, PEEK, EPDM and Viton^{®.}

Variety of End Combinations

A wide choice of end connections are available including, but not limited to; threaded, socket weld, butt weld and flanged.

ISO 5211 Integral Mounting Pad

Ideal for actuation.

Centering lip feature assures precise alignment of bracket, stem and coupler.

Actuators may be retrofitted on existing Sharpe[®] Flush Bottom Tank Valves without disruption of line integrity.

Allows for secondary containment unit to be added when necessary.

Lockable Handle

All Sharpe[®] Flush Bottom Tank Valves are supplied with lever or pipe handles and are designed to permit locking the valve in either the open or closed position.

Traceability

Body and end piece castings are marked with heat codes providing traceability to the chemical analysis and material test reports performed at the foundry. CMTR's (Certified Material Test Reports) are available upon request.

Dimensions

Series 84

Size	Х	Y	Ρ
1"	4.75	1.61	0.82
11⁄4"	4.75	0.79	1.00
11⁄2"	5.50	1.50	1.25
2"	5.50	1.10	1.50

Series 88						
Size	х	Y	Ρ			
1"	3.74	0.79	0.87			
11⁄4"	3.74	0.79	1.12			
11/2"	5.50	1.10	1.37			
2"	5.50	1.14	1.87			

Series 99								
Size	х	Y	Ρ					
1"	4.75	0.79	1.00					
11⁄4"	5.50	1.50	1.25					
11/2"	5.50	1.10	1.50					

C	or	ioc	Q/
2	e	ies	04

Size	х	Y	Р	
21/2"	7.00	1.32	2.00	

	_	_
Sorioc	2	2
JUIUS	U	U

Size	х	Y	Ρ
21/2"	7.00	1.34	2.37

Series 99

Size	Х	Y	Р
2"	7.00	1.32	2.00

Dimensions

Series 84 Series 88		Series 9	9								
Size	Х	Y	Р	Size	Х	Y	Р	Size	Х	Y	Р
3"	10.00	2.16	2.50	3"	10.00	1.69	2.87	21/2"	10.00	2.16	2.50
4"	11.50	1.93	3.25	4"	11.50	1.93	3.83	3"	11.50	1.93	3.25

Note: The dimensions above are for information only. Please refer to Sharpe® Valves if you need dimensions for construction.

Notes:	
	SHARPE

An ASC Engineered Solution

About ASC Engineered Solutions

ASC Engineered Solutions is defined by quality—in its products, services and support. With nearly 2,000 employees, the company's portfolio of precision–engineered piping support, valves and connections provides products to more than 4,000 customers across industries, such as mechanical, industrial, fire protection, oil and gas, and commercial and residential construction. Its portfolio of leading brands includes ABZ Valve®, AFCON®, Anvil®, Anvil EPS, Anvil Services, Basic–PSA, Beck®, Catawissa, Cooplet®, FlexHead®, FPPI®, Gruvlok®, J.B. Smith, Merit®, North Alabama Pipe, Quadrant®, SCI®, Sharpe®, SlideLOK®, SPF®, SprinkFLEX®, Trenton Pipe and VEP. With headquarters in Oak Brook, IL, ASC also has ISO 9001:2015 certified production facilities in PA, TN, IL, TX, AL, LA, KS, and RI.

asc-es.com

